Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 57: 7-16, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30738534

ABSTRACT

Radiation protection of astronauts remains an ongoing challenge in preparation of deep space exploratory missions. Exposure to space radiation consisting of multiple radiation components is associated with a significant risk of experiencing central nervous system (CNS) detriments, potentially influencing the crew operational decisions. Developing of countermeasures protecting CNS from the deleterious exposure requires understanding the mechanistic nature of cognitive impairments induced by different components of space radiation. The current study was designed to identify differences in neurochemical modifications caused by exposure to low- and moderate-LET radiations and to elucidate a distinction between the observed outcomes. We exposed rats to accelerated protons (170 MeV; 0.5 keV/µm) or to carbon ions (12C; 500 MeV/u; 10.5 keV/µm) delivered at the same dose of 1 Gy. Neurochemical alterations were evaluated 1, 30, and 90 days after exposure via indices of the monoamine metabolism measured in five brain structures, including prefrontal cortex, hypothalamus, nucleus accumbens, hippocampus and striatum. We obtained the detailed patterns of neurochemical modifications after exposure to the mentioned radiation modalities. Our data show that the enhancement in the radiation LET from relatively low to moderate values leads to different neurochemical outcomes and that a particular effect depends on the irradiated brain structure. We also hypothesized that exposure to the moderate-LET radiations can induce a hyperactivation of feedback neurochemical mechanisms, which blur metabolic deviations and lead to the delayed impairments in brain functions. Based on our findings we discuss possible contribution of the observed changes to behavioural impairments.


Subject(s)
Astronauts , Linear Energy Transfer , Neurochemistry , Radiation Protection , Animals , Brain/metabolism , Brain/radiation effects , Dose-Response Relationship, Radiation , Humans , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...