Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Neurobiol ; 84(2): 93-110, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526217

ABSTRACT

Children born preterm have an increased likelihood of developing neurobehavioral disorders such as attention-deficit hyperactivity disorder (ADHD) and anxiety. These disorders have a sex bias, with males having a higher incidence of ADHD, whereas anxiety disorder tends to be more prevalent in females. Both disorders are underpinned by imbalances to key neurotransmitter systems, with dopamine and noradrenaline in particular having major roles in attention regulation and stress modulation. Preterm birth disturbances to neurodevelopment may affect this neurotransmission in a sexually dimorphic manner. Time-mated guinea pig dams were allocated to deliver by preterm induction of labor (gestational age 62 [GA62]) or spontaneously at term (GA69). The resultant offspring were randomized to endpoints as neonates (24 h after term-equivalence age) or juveniles (corrected postnatal day 40, childhood equivalence). Relative mRNA expressions of key dopamine and noradrenaline pathway genes were examined in the frontal cortex and hippocampus and quantified with real-time PCR. Myelin basic protein and neuronal nuclei immunostaining were performed to characterize the impact of preterm birth. Within the frontal cortex, there were persisting reductions in the expression of dopaminergic pathway components that occurred in preterm males only. Conversely, preterm-born females had increased expression of key noradrenergic receptors and a reduction of the noradrenergic transporter within the hippocampus. This study demonstrated that preterm birth results in major changes in dopaminergic and noradrenergic receptor, transporter, and synthesis enzyme gene expression in a sex- and region-based manner that may contribute to the sex differences in susceptibility to neurobehavioral disorders. These findings highlight the need for the development of sex-based treatments for improving these conditions.


Subject(s)
Premature Birth , Animals , Female , Guinea Pigs , Dopamine/metabolism , Frontal Lobe , Hippocampus/metabolism , Norepinephrine/metabolism , Premature Birth/genetics , Premature Birth/metabolism
2.
Front Pediatr ; 12: 1336137, 2024.
Article in English | MEDLINE | ID: mdl-38343746

ABSTRACT

Preterm birth is known to cause impaired cerebellar development, and this is associated with the development of neurobehavioral disorders. This review aims to identify the mechanisms through which preterm birth impairs cerebellar development and consequently, increases the risk of developing neurobehavioral disorders. The severity of these disorders is directly related to the degree of prematurity, but it is also evident that even late preterm births are at significantly increased risk of developing serious neurobehavioral disorders. Preterm birth is associated with hypoxic events and increased glutamatergic tone within the neonatal brain which contribute to excitotoxic damage. The cerebellum is a dense glutamatergic region which undergoes relatively late neurodevelopment up to and beyond birth. Evidence indicates that the cerebellum forms reciprocal connections to regions important in behaviour regulation such as the limbic system and frontal cortex. Studies using fMRI (functional magnetic resonance Imaging), BOLD (blood oxygen level dependent) response and morphology studies in humans show the cerebellum is often involved in disorders such as attention deficit hyperactivity disorder (ADHD) and anxiety. The vulnerability of the cerebellum to preterm birth insult and its connections to behaviour associated brain regions implicates it in the development of neurobehavioral disorders. Protection against preterm associated insults on the cerebellum may provide a novel avenue through which ADHD and anxiety can be reduced in children born preterm.

3.
Dev Neurosci ; 45(5): 290-308, 2023.
Article in English | MEDLINE | ID: mdl-37004512

ABSTRACT

Disruptions to neurodevelopment are known to be linked to behavioral disorders in childhood and into adulthood. The fetal brain is extremely vulnerable to stimuli that alter inhibitory GABAergic pathways and critical myelination processes, programing long-term neurobehavioral disruption. The maturation of the GABAergic system into the major inhibitory pathway in the brain and the development of oligodendrocytes into mature cells capable of producing myelin are integral components of optimal neurodevelopment. The current study aimed to elucidate prenatal stress-induced mechanisms that disrupt these processes and to delineate the role of placental pathways in these adverse outcomes. Pregnant guinea pig dams were exposed to prenatal stress with strobe light exposure for 2 h/day on gestational age (GA) 35, 40, 45, 50, 55, 60, and 65, and groups of fetuses and placentae were collected after the stress exposure on GA40, GA50, GA60, and GA69 (term). Fetal plasma, placental, and brain tissue were collected for allopregnanolone and cortisol quantification with ELISA. Relative mRNA expression of genes of specific pathways of interest was examined with real-time PCR in placental and hippocampal tissue, and myelin basic protein (MBP) was quantified immunohistochemically in the hippocampus and surrounding regions for assessment of mature myelin. Prenatal stress in mid-late gestation resulted in disruptions to the translational machinery responsible for the production of myelin and decreased myelin coverage in the hippocampus and surrounding regions. The male placenta showed an initial protective increase in allopregnanolone concentrations in response to maternal psychosocial stress. The male and female placentae had a sex-dependent increase in neurosteroidogenic enzymes at term following prenatal stress. Independent from exposure to prenatal stress, at gestational day 60 - a critical period for myelin development, the placentae of female fetuses had increased capability of preventing cortisol transfer to the fetus through expression of 11-beta-hydroxysteroid dehydrogenase types 1 and 2. The deficits early in the process of maturation of myelination indicate that the reduced myelination observed at childhood equivalence in previous studies begins in fetal life. This negative programing persists into childhood, potentially due to dysregulation of MBP translation processes. Expression patterns of neurosteroidogenic enzymes in the placenta at term following stress may identify at-risk fetuses that have been exposed to a stressful in utero environment.

4.
Front Cell Neurosci ; 17: 1298685, 2023.
Article in English | MEDLINE | ID: mdl-38269115

ABSTRACT

Primary cell culture is a technique that is widely used in neuroscience research to investigate mechanisms that underlie pathologies at a cellular level. Typically, mouse or rat tissue is used for this process; however, altricial rodent species have markedly different neurodevelopmental trajectories comparatively to humans. The use of guinea pig brain tissue presents a novel aspect to this routinely used cell culture method whilst also allowing for dual isolation of two major cell types from a physiologically relevant animal model for studying perinatal neurodevelopment. Primary neuronal and oligodendrocyte cell cultures were derived from fetal guinea pig's frontal cortex brain tissue collected at a gestational age of 62 days (GA62), which is a key time in the neuronal and oligodendrocyte development. The major advantage of this protocol is the ability to acquire both neuronal and oligodendrocyte cellular cultures from the frontal cortex of one fetal brain. Briefly, neuronal cells were grown in 12-well plates initially in a 24-h serum-rich medium to enhance neuronal survival before switching to a serum-free media formulation. Oligodendrocytes were first grown in cell culture flasks using a serum-rich medium that enabled the growth of oligodendrocyte progenitor cells (OPCs) on an astrocyte bed. Following confluency, the shake method of differential adhesion and separation was utilized via horizontally shaking the OPCs off the astrocyte bed overnight. Therefore, OPCs were plated in 12-well plates and were initially expanded in media supplemented with growth hormones, before switching to maturation media to progress the lineage to a mature phenotype. Reverse transcription-polymerase chain reaction (RT-PCR) was performed on both cell culture types to analyze key population markers, and the results were further validated using immunocytochemistry. Primary neurons displayed the mRNA expression of multiple neuronal markers, including those specific to GABAergic populations. These cells also positively stained for microtubule-associated protein 2 (MAP2; a dendritic marker specific to neurons) and NeuN (a marker of neuronal cell bodies). Primary oligodendrocytes expressed all investigated markers of the oligodendrocyte lineage, with a majority of the cells displaying an immature oligodendrocyte phenotype. This finding was further confirmed with positive oligodendrocyte transcription factor (OLIG2) staining, which serves as a marker for the overall oligodendrocyte population. This study demonstrates a novel method for isolating both neurons and oligodendrocytes from the guinea pig brain tissue. These isolated cells display key markers and gene expression that will allow for functional experiments to occur and may be particularly useful in studying neurodevelopmental conditions with perinatal origins.

5.
BMC Neurol ; 12: 157, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23234560

ABSTRACT

BACKGROUND: Many Polio survivors have reduced mobility, pain and fatigue, which make access to conventional forms of aerobic exercise difficult. Inactivity leads to increased risk of health problems, many of which are prevalent among Polio survivors. Aerobic exercise programmes in Polio survivors should utilise stable muscle groups and should be designed to minimise exacerbation of pain and fatigue. A home-based arm ergometry aerobic exercise programme may represent an affordable and accessible exercise modality, incorporating exercise prescription principles in this group. METHODS/DESIGN: This is a prospective, single blinded, randomised controlled trial. There are two arms; exercise intervention using arm ergometers and control. Polio survivors meeting eligibility criteria will be recruited and randomly allocated to intervention or control groups. Participants allocated to the intervention group will receive a small arm ergometer and a polar heart rate monitor. They will carry out a home-based moderate intensity (50-70% HRMax) aerobic exercise programme for eight weeks, following instruction by the treating physiotherapist. Assessments will occur at baseline and after eight weeks and will include tests of physical fitness, activity, energy cost of walking, fatigue and quality of life. Clinically feasible assessment tools including the Six Minute Arm Test, the Physical Activity Scale for People with Physical Disabilities questionnaire, the Physiological Cost Index, Fatigue Severity Scale and the SF-36v2 will be utilised. DISCUSSION: The efficacy of a home-based arm ergometry programme in Polio survivors will be examined. No previous trial has examined such a programme using a wide range of outcome measures pertinent to Polio survivors. This study will provide new information on the impact of arm ergometry on physical fitness, activity, body composition, fatigue, pain, muscle strength, and health related quality of life. Also, the study will provide information, which at present is lacking, on safety of aerobic exercise in Polio, as potential negative outcomes of activity including loss of muscle strength, increased pain and fatigue will be closely monitored.


Subject(s)
Ergometry/methods , Fatigue/therapy , Motor Activity/physiology , Physical Fitness/physiology , Poliomyelitis/therapy , Clinical Protocols , Exercise Therapy/methods , Fatigue/physiopathology , Humans , Poliomyelitis/physiopathology , Single-Blind Method
6.
BMC Ear Nose Throat Disord ; 12: 3, 2012 Mar 26.
Article in English | MEDLINE | ID: mdl-22449224

ABSTRACT

BACKGROUND: Unilateral peripheral vestibular loss results in gait and balance impairment, dizziness and oscillopsia. Vestibular rehabilitation benefits patients but optimal treatment remains unknown. Virtual reality is an emerging tool in rehabilitation and provides opportunities to improve both outcomes and patient satisfaction with treatment. The Nintendo Wii Fit Plus® (NWFP) is a low cost virtual reality system that challenges balance and provides visual and auditory feedback. It may augment the motor learning that is required to improve balance and gait, but no trials to date have investigated efficacy. METHODS/DESIGN: In a single (assessor) blind, two centre randomised controlled superiority trial, 80 patients with unilateral peripheral vestibular loss will be randomised to either conventional or virtual reality based (NWFP) vestibular rehabilitation for 6 weeks. The primary outcome measure is gait speed (measured with three dimensional gait analysis). Secondary outcomes include computerised posturography, dynamic visual acuity, and validated questionnaires on dizziness, confidence and anxiety/depression. Outcome will be assessed post treatment (8 weeks) and at 6 months. DISCUSSION: Advances in the gaming industry have allowed mass production of highly sophisticated low cost virtual reality systems that incorporate technology previously not accessible to most therapists and patients. Importantly, they are not confined to rehabilitation departments, can be used at home and provide an accurate record of adherence to exercise. The benefits of providing augmented feedback, increasing intensity of exercise and accurately measuring adherence may improve conventional vestibular rehabilitation but efficacy must first be demonstrated. TRIAL REGISTRATION: Clinical trials.gov identifier: NCT01442623.

SELECTION OF CITATIONS
SEARCH DETAIL
...