Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Procedia Comput Sci ; 213: 428-434, 2022.
Article in English | MEDLINE | ID: mdl-36466311

ABSTRACT

The effectiveness of predicting the dynamics of the coronavirus pandemic for Russia as a whole and for Moscow is studied for a two-year period beginning March 2020. The comparison includes well-proven population models and statistic methods along with a new data-driven model based on the LSTM neural network. The latter model is trained on a set of Russian regions simultaneously, and predicts the total number of cases on the 14-day forecast horizon. Prediction accuracy is estimated by the mean absolute percent error (MAPE). The results show that all the considered models, both simple and more complex, have similar efficiency. The lowest error achieved is 18% MAPE for Moscow and 8% MAPE for Russia.

2.
Procedia Comput Sci ; 193: 276-284, 2021.
Article in English | MEDLINE | ID: mdl-34815816

ABSTRACT

The large amount of data accumulated so far on the dynamics of the COVID-19 outbreak has allowed assessing the accuracy of forecasting methods in retrospect. This work compares several basic time series analysis methods, including machine learning methods, for forecasting the number of confirmed cases for some days ahead. Year-long data for all regions of Russia has been used from the Yandex DataLens platform. As a result, accuracy estimates for these basic methods have been obtained for Russian regions and Russia as a whole, in dependence on the forecasting horizon. The best basic models for forecasting for 14 days are exponential smoothing and ARIMA, with an error of 11-19% by the MAPE metric for the latest part of the course of the epidemic. The accuracies obtained can be considered as baselines for more complex prospective models.

SELECTION OF CITATIONS
SEARCH DETAIL
...