Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(9): e19595, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809669

ABSTRACT

Incorporation of nanomaterials into polymers and their blend provide additional advantages to their use and structural support. Metals such as Ag, Cu, Ti, and Fe are often reported in their metallic or their oxide forms for applications in microbiological, water treatment, and biomedical fields. The integration of metal oxide nanoparticles into polymer fiber blends overcomes the mechanical instability and compatibility challenges of nanomaterials. Manganese-based oxides provide good stability and optical properties in their nanoscale useful in polymeric composite or fiber materials enhancement. MnO2 and Mn2O3 nanoparticles were synthesized at different calcination temperatures using the co-precipitation method and characterized a microscopic technique TEM, and TGA. TEM images and the XRD patterns confirmed that the manganese oxide nanoparticle were spheres and rod-shaped with corresponding cryptomelane and orthorhombic crystalline phases. Mn2O3 nanoparticles were successfully integrated into zein/PVA (80/20) fiber blends. SEM images confirmed that the inclusion of the nanoparticles into zein/PVA solutions increased the conductivity of the solutions which led to an improved morphology and increased surface area to volume ratio. XRD patterns and TGA showed that the incorporated nanoparticles were below the detection limit, therefore there was no significant change observed. Therefore, all characterization techniques illustrated that the effect of concentration significantly enhanced the morphology of the fiber blends.

2.
RSC Adv ; 10(56): 34231-34246, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519021

ABSTRACT

To study the effect of time on the colloidal synthesis of Cu3N nanoparticles, copper(ii) nitrate was thermally decomposed at 260 °C for up to 60 min in octadecylamine as a stabilizing ligand. Thermolysis of the nitrate followed four steps which included; nucleation, growth, ripening and decomposition. At 5 min, partially developed nanocubes were found in a dense population of Cu3N nuclei. Well-defined Cu3N nanocubes were obtained at 15 min with no presence of the nuclei. TEM images showed disintegration of the cubes at 20 min and as time progressed, all the Cu3N decomposed to Cu by 60 min. The formation of the Cu3N nanocubes was confirmed by XRD and XPS. FTIR suggested the formation of a nitrile (RCN) as a result of the thermal decomposition in octadecylamine (ODA) and this was confirmed using NMR and hence, a reaction mechanism was then proposed. The optical properties of the as-synthesized Cu3N were studied using UV-vis and photoluminescence spectroscopies. The absorption spectra for particles synthesized from 5 min to 15 min showed a singular exciton peak while from 20 min to 60 min two peaks were observed. The two peaks may both be associated with the two direct transitions observed in Cu3N or the more red-shifted peak could be a result of localized surface plasmon resonance due to the Cu nanoparticles. Nevertheless, similar to other studies, it is clear that the optical properties of Cu3N are complex.

3.
Heliyon ; 5(10): e02635, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31687498

ABSTRACT

Agro-wastes such as sugar cane bagasse can be explored for use in different aspects. Its applicability as a source of cellulose has attracted much interests especially in biomedical field among various applications. In the current work chemically purified cellulose (CPC) and cellulose nanocrystals (CNCs) were effectively extracted from sugarcane bagasse (SCB). The cellulose was obtained by chemical treatment of SCB using HNO3, NaOH and a bleaching agent. Nanocrystals were further prepared from the extracted cellulose using H2SO4 hydrolysis followed by washing with deionized water and acetone. The obtained materials were characterized for surface morphological using Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) analysis. The thermal properties were evaluated using TGA/DTG. The FTIR showed the disappearance of the peaks responsible for the hemicelluloses and lignin. These results were confirmed by TGA which proved gradual elimination of non-cellulosic constituents. X-ray Diffractometer depicted an increase in crystallinity occasioned by sequential treatments to get the cellulose nanocrystals. Cellulose nanocrystals had a spherical shape with a diameter of 38nm as compared to the chemically purified cellulose which had a diameter of 76nm. The CNCs prepared with this method were seen to be less agglomerated and more crystalline thus possess a higher potential as bionanocomposite either for biomedical applications or for wastewater treatment among other industrial application. This approach also provides an opportunity for the sugar companies to effectively manage their waste product.

SELECTION OF CITATIONS
SEARCH DETAIL
...