Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 6531, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33753764

ABSTRACT

Whether cyclooxygenase (COX)/prostaglandin E2 (PGE2) thermoregulatory pathways, observed in rodents, present in humans? Participants (n = 9) were exposed to three environments; cold (20 °C), thermoneutral (30 °C) and hot (40 °C) for 120 min. Core (Tc)/skin temperature and thermal perception were recorded every 15 min, with COX/PGE2 concentrations determined at baseline, 60 and 120 min. Linear mixed models identified differences between and within subjects/conditions. Random coefficient models determined relationships between Tc and COX/PGE2. Tc [mean (range)] increased in hot [+ 0.8 (0.4-1.2) °C; p < 0.0001; effect size (ES): 2.9], decreased in cold [- 0.5 (- 0.8 to - 0.2) °C; p < 0.0001; ES 2.6] and was unchanged in thermoneutral [+ 0.1 (- 0.2 to 0.4) °C; p = 0.3502]. A relationship between COX2/PGE2 in cold (p = 0.0012) and cold/thermoneutral [collapsed, condition and time (p = 0.0243)] was seen, with higher PGE2 associated with higher Tc. A within condition relationship between Tc/PGE2 was observed in thermoneutral (p = 0.0202) and cold/thermoneutral [collapsed, condition and time (p = 0.0079)] but not cold (p = 0.0631). The data suggests a thermogenic response of the COX/PGE2 pathway insufficient to defend Tc in cold. Further human in vivo research which manipulates COX/PGE2 bioavailability and participant acclimation/acclimatization are warranted to elucidate the influence of COX/PGE2 on Tc.


Subject(s)
Body Temperature Regulation/genetics , Cyclooxygenase 2/genetics , Dinoprostone/genetics , Skin Temperature/genetics , Adult , Biological Availability , Body Temperature , Cold Temperature , Hot Temperature , Humans , Male
2.
Front Physiol ; 11: 839, 2020.
Article in English | MEDLINE | ID: mdl-32765299

ABSTRACT

This study identified the changes in hypertrophy/atrophy and mitochondrial-related signaling in human skeletal muscle following whole-body (WB) and localized single leg (SL) heat treatment. Nine active male participants were administered either 60 min of passive WB (44-50°C, 50% humidity) or SL (water-perfused suit at 49.5 ± 1.4°C) heat treatment at least 1 week apart in a counterbalanced order. The untreated leg during SL was considered as control (CON). Core, skin, and quadriceps muscle temperature were monitored throughout the experimental trials. Muscle microbiopsy samples were obtained prior to (PRE), and 30 min and 3 h post (POST) following heat treatment. Muscle temperature increased with time (p < 0.0001) in both WB and SL, with no differences between conditions (38.8 ± 0.5°C vs. 38.1 ± 0.6°C, p = 0.065). Core temperature increased only following WB, and was significantly higher compared with SL (39.1 ± 0.3°C vs. 37.1 ± 0.1, p < 0.0001). Compared with PRE, WB up-regulated the phosphorylation status of the majority of the Akt/mTOR pathway (Akt, mTOR, S6K1, rpS6, and p-eIF4E; p ≤ 0.050), with the exception of 4EBP1 (p = 0.139). WB also increased the mRNA of HSPs 72, 90, and 25 (all p < 0.021), and increased or tended to increase the phosphorylation of FOXO1 (p = 0.066) and FOXO3a (p = 0.038). In addition, most (NRF1, NRF2, COX2, and COX4-I2; all p ≤ 0.050), but not all (CS, Cyt c, and COX4-I1; p > 0.441) mRNA content indicative of mitochondrial biogenesis were increased following WB, with no changes evident in these parameters in SL or CON (all p > 0.090). These results indicate that 1 h of WB heat treatment enhanced anabolic (Akt/mTOR), mitochondrial, and cyto-protective signaling (HSP), with a concomitant possible inhibition of FOXO transcription factors.

3.
Int J Sports Physiol Perform ; 14(6): 822­828, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30569748

ABSTRACT

Terbutaline is a prohibited drug except for athletes with a therapeutic use exemption certificate; terbutaline's effects on endurance performance are relatively unknown. Purpose: To investigate the effects of 2 therapeutic (2 and 4 mg) inhaled doses of terbutaline on 3-km running time-trial performance. Methods: A total of 8 men (age 24.3 [2.4] y; weight 77.6 [8] kg; and height 179.5 [4.3] cm) and 8 women (age 22.4 [3] y; weight 58.6 [6] kg; and height 163 [9.2] cm) free from respiratory disease and illness provided written informed consent. Participants completed 3-km running time trials on a nonmotorized treadmill on 3 separate occasions following placebo and 2- and 4-mg inhaled terbutaline in a single-blind, repeated-measures design. Urine samples (15 min postexercise) were analyzed for terbutaline concentration. Data were analyzed using 1-way repeated-measures analysis of variance, and significance was set at P < .05 for all analyses. Results: No differences were observed for completion times (1103 [201] s, 1106 [195] s, 1098 [165] s; P = .913) for the placebo or 2- and 4-mg inhaled trials, respectively. Lactate values were higher (P = .02) after 4 mg terbutaline (10.7 [2.3] mmol·L-1) vs placebo (8.9 [1.8] mmol·L-1). Values of forced expiratory volume in the first second of expiration (FEV1) were greater after inhalation of 2 mg (5.08 [0.2]; P = .01) and 4 mg terbutaline (5.07 [0.2]; P = .02) compared with placebo (4.83 [0.5] L) postinhalation. Urinary terbutaline concentrations were mean 306 (288) ng·mL-1 and 435 (410) ng·mL-1 (P = .2) and peak 956 ng·mL-1 and 1244 ng·mL-1 after 2 and 4 mg inhaled terbutaline, respectively. No differences were observed between the male and female participants. Conclusions: Therapeutic dosing of terbutaline does not lead to an improvement in 3-km running performance despite significantly increased FEV1. The findings suggest that athletes using inhaled terbutaline at high therapeutic doses to treat asthma will not gain an ergogenic advantage during 3-km running performance.


Subject(s)
Athletic Performance , Performance-Enhancing Substances/administration & dosage , Running , Terbutaline/administration & dosage , Administration, Inhalation , Adult , Asthma/drug therapy , Female , Forced Expiratory Volume , Humans , Lactic Acid/blood , Male , Single-Blind Method , Young Adult
4.
J Sports Sci Med ; 16(4): 581-588, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29238260

ABSTRACT

The Objectives of the study were to investigate whether 400 µg inhaled salbutamol influences 3 km running time-trial performance and lung function in eucapnic voluntary hyperpnoea positive (EVH+ve) and negative (EVH-ve) individuals. Fourteen male participants (22.4 ± 1.6yrs; 76.4 ± 8.7kg; 1.80 ± 0.07 m); (7 EVH+ve; 7 EVH-ve) were recruited following written informed consent. All participants undertook an EVH challenge to identify either EVH+ve (↓FEV1>10%) or EVH-ve (↓FEV1<10%). Participants performed three separate 3 km running time-trials in a low-humidity (20-25%) environment on a non-motorized treadmill, 15 minutes following inhalation of salbutamol (400 µg), placebo (non-active inhalant) or control (no inhalant), in a randomized, single-blind, repeated measures design. Forced vital capacity maneuvers were performed at baseline, 10 minutes post inhalation and post time-trial. Time to complete 3 km and lung function data were analyzed using mixed model repeated measures ANOVA. Significance was assumed at p < 0.05. All EVH+ve participants had FEV1 falls from baseline between 10-25% post-challenge. There was no difference in performance time between trial conditions in EVH+ve (1012.7 ± 129.6s; 1002.4 ± 123.1s; 1015.9 ± 113.0s) (p = 0.774) and EVH-ve (962.1 ± 99.2s; 962.0 ± 76.2s; 950.8 ± 84.9s) (p = 0.401) groups for salbutamol, placebo and control trials, respectively. Exercising heart rate was significantly higher (p = 0.05) in the salbutamol trial (183 ± 8 beatsˑmin-1) compared to control (180 ± 9 beatsˑmin-1) with a trend towards significance (p=0.06) in the placebo trial (179 ± 9 beatsˑmin-1) for the pooled groups, no differences were seen between trials in groups individually. There was an increase in FEV1 in both EVH+ve (4.01 ± 0.8L; 4.26 ± 0.7L; 4.25 ± 0.5L) and EVH-ve (4.81 ± 0.4L; 5.1 ± 0.4L; 5.1 ± 0.5L) groups which was significant post-inhalation (p = 0.01; p = 0.02), but not post-time-trial (p = 0.27; p = 0.06), respectively, following salbutamol. EVH+ve participants did not demonstrate significant falls (>10% from baseline) in FEV1 following any time-trial. Administration of 400µg inhaled salbutamol does not improve 3 km time-trial performance in either mild EVH+ve or EVH-ve individuals despite significantly increased HR and FEV1.

7.
Clin J Sport Med ; 24(6): 474-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24451697

ABSTRACT

OBJECTIVE: Investigate the effect of inhaling 1600 µg salbutamol for 6 weeks on endurance, strength, and power performances. DESIGN: Randomized double-blind, mixed-model repeated measures. PARTICIPANTS: Sixteen male athletes (mean ± SD: age, 20.1 ± 1.6 years; height, 179.9 ± 8.2 cm; weight, 74.6 ± 9.1 kg). INTERVENTIONS: Participants were assigned to either a placebo inhaler (PLA) or inhaled 1600 µg salbutamol group (SAL). Over 6 weeks, participants inhaled PLA or SAL and completed 4 training sessions per week that focused on endurance, strength, and power. MAIN OUTCOME MEASURES: Participants completed the assessments of peak oxygen consumption (V[Combining Dot Above]O2peak), 3-km time trial, vertical jump height, 1 repetition maximum (1RM) bench and leg press, and peak torque knee flexion and extension. Assessments were undertaken at baseline, week 3, and week 6. RESULTS: Over the 6 weeks, PLA and SAL groups improved V[Combining Dot Above]O2peak (51.7 ± 4.7 vs 56.8 ± 7.1 mL·min·kg; 53.1 ± 6.1 vs 55.0 ± 6.7 mL·min·kg); 3-km running time trial (988.6 ± 194.6 vs 947.5 ± 155.5 seconds; 1040.4 ± 187.4 vs 1004.2 ± 199.4 seconds); 1RM bench press (65.7 ± 15.4 vs 70.3 ± 13.8 kg; 64.3 ± 14.0 vs 72.5 ± 15.3 kg); and leg press (250.0 ± 76.4 vs 282.5 ± 63.6 kg; 217.9 ± 54.0 vs 282.8 ± 51.9 kg). The SAL group did not improve significantly greater in any endurance or strength and power measure when compared with the PLA group. CONCLUSIONS: Inhaling 1600 µg salbutamol daily over 6 weeks does not result in significant improvements in endurance, or strength and power performances. CLINICAL RELEVANCE: Athletes using inhaled salbutamol to treat bronchoconstriction during exercise on a daily basis will not gain an advantage over nonasthmatic athletes not using inhaled salbutamol.


Subject(s)
Adrenergic beta-2 Receptor Agonists/pharmacology , Albuterol/pharmacology , Athletes , Muscle Strength/drug effects , Physical Endurance/drug effects , Administration, Inhalation , Adrenergic beta-2 Receptor Agonists/administration & dosage , Adult , Albuterol/administration & dosage , Athletic Performance , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Exercise Test , Humans , Male , Muscle Strength Dynamometer , Oxygen Consumption/drug effects , Running
SELECTION OF CITATIONS
SEARCH DETAIL
...