Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Annu Rev Microbiol ; 77: 317-339, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37285554

ABSTRACT

LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.


Subject(s)
Bacterial Proteins , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Bacterial Proteins/metabolism , Bacteria/genetics , Bacteria/metabolism , DNA/chemistry , Protein Binding
2.
Protein Expr Purif ; 206: 106254, 2023 06.
Article in English | MEDLINE | ID: mdl-36804950

ABSTRACT

Acinetobacter baylyi is an interesting model organism to investigate bacterial metabolism due to its vast repertoire of metabolic enzymes and ease of genetic manipulation. However, the study of gene expression in vitro is dependent on the availability of its RNA polymerase (RNAp), an essential enzyme in transcription. In this work, we developed a convenient method of producing the recombinant A. baylyi ADP1 RNA polymerase holoenzyme (RNApholo) in E. coli that yields 22 mg of a >96% purity protein from a 1-liter shake flask culture. We further characterized the A. baylyi ADP1 RNApholo kinetic profile using T7 Phage DNA as template and demonstrated that it is a highly transcriptionally active enzyme with an elongation rate of 24 nt/s and a termination efficiency of 94%. Moreover, the A. baylyi ADP1 RNApholo has a substantial sequence identity (∼95%) with the RNApholo from the human pathogen Acinetobacter baumannii. This protein can serve as a source of material for structural and biological studies towards advancing our understanding of genome expression and regulation in Acinetobacter species.


Subject(s)
Acinetobacter baumannii , Acinetobacter , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Acinetobacter/genetics , Acinetobacter/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Acinetobacter baumannii/genetics , Holoenzymes/metabolism
3.
Metab Eng ; 61: 171-180, 2020 09.
Article in English | MEDLINE | ID: mdl-32569710

ABSTRACT

Metabolic engineering is used to improve titers, yields and generation rates for biochemical products in host microbes such as Escherichia coli. A wide range of biochemicals are derived from the central carbon metabolite acetyl-CoA, and the largest native drain of acetyl-CoA in most microbes including E. coli is entry into the tricarboxylic acid (TCA) cycle via citrate synthase (coded by the gltA gene). Since the pathway to any biochemical derived from acetyl-CoA must ultimately compete with citrate synthase, a reduction in citrate synthase activity should facilitate the increased formation of products derived from acetyl-CoA. To test this hypothesis, we integrated into E. coli C ΔpoxB twenty-eight citrate synthase variants having specific point mutations that were anticipated to reduce citrate synthase activity. These variants were assessed in shake flasks for growth and the production of acetate, a model product derived from acetyl-CoA. Mutations in citrate synthase at residues W260, A267 and V361 resulted in the greatest acetate yields (approximately 0.24 g/g glucose) compared to the native citrate synthase (0.05 g/g). These variants were further examined in controlled batch and continuous processes. The results provide important insights on improving the production of compounds derived from acetyl-CoA.


Subject(s)
Acetates/metabolism , Citrate (si)-Synthase , Escherichia coli Proteins , Escherichia coli , Point Mutation , Protein Engineering , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
4.
Protein Expr Purif ; 163: 105448, 2019 11.
Article in English | MEDLINE | ID: mdl-31279833

ABSTRACT

The bacterial RNA polymerase (RNAP) is a large, complex molecular machine that is the engine of gene expression. Despite global conservation in their structures and function, RNAPs from different bacteria can have unique features in promoter and transcription factor recognition. Therefore, availability of purified RNAP from different bacteria is key to understanding these species-specific aspects and will be valuable for antibiotic drug discovery. Pseudomonas aeruginosa is one of the leading causes of hospital and community acquired infections worldwide - making the organism an important public health pathogen. We developed a method for producing high quantities of highly pure and active recombinant P. aeruginosa str. PAO1 RNAP core and holoenzyme complexes that employed two-vector systems for expressing the core enzyme (α, ß, ß', and ω subunits) and for expressing the holoenzyme complex (core + σ70). Unlike other RNAP expression approaches, we used a low temperature autoinduction system in E. coli with T7 promoters that produced high cell yields and stable protein expression. The purification strategy comprised of four chromatographic separation steps (metal chelate, heparin, and ion-exchange) with yields of up to 11 mg per 500 mL culture. Purified holoenzyme and reconstituted holoenzyme from core and σ70 were highly active at transcribing both small and large-sized DNA templates, with a determined elongation rate of ~18 nt/s for the holoenzyme. The successful purification of the P. aeruginosa RNAP provides a gateway for studies focusing on in vitro transcriptional regulation in this pathogen.


Subject(s)
DNA-Directed RNA Polymerases/isolation & purification , Holoenzymes/isolation & purification , Pseudomonas aeruginosa/enzymology , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Cloning, Molecular/methods , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Holoenzymes/genetics , Holoenzymes/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/isolation & purification , Multienzyme Complexes/metabolism , Pseudomonas aeruginosa/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Genes (Basel) ; 10(6)2019 05 31.
Article in English | MEDLINE | ID: mdl-31159259

ABSTRACT

The simultaneous response of one transcriptional regulator to different effectors remains largely unexplored. Nevertheless, such interactions can substantially impact gene expression by rapidly integrating cellular signals and by expanding the range of transcriptional responses. In this study, similarities between paralogs were exploited to engineer novel responses in CatM, a regulator that controls benzoate degradation in Acinetobacter baylyi ADP1. One goal was to improve understanding of how its paralog, BenM, activates transcription in response to two compounds (cis,cis-muconate and benzoate) at levels significantly greater than with either alone. Despite the overlapping functions of BenM and CatM, which regulate many of the same ben and cat genes, CatM normally responds only to cis,cis-muconate. Using domain swapping and site-directed amino acid replacements, CatM variants were generated and assessed for the ability to activate transcription. To create a variant that responds synergistically to both effectors required alteration of both the effector-binding region and the DNA-binding domain. These studies help define the interconnected roles of protein domains and extend understanding of LysR-type proteins, the largest family of transcriptional regulators in bacteria. Additionally, renewed interest in the modular functionality of transcription factors stems from their potential use as biosensors.


Subject(s)
Acinetobacter/genetics , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Transcription Factors/genetics , Organic Cation Transport Proteins/genetics , Regulatory Elements, Transcriptional/genetics
6.
J Bioinform Comput Biol ; 16(4): 1850013, 2018 08.
Article in English | MEDLINE | ID: mdl-30012015

ABSTRACT

miRNAs are involved in many critical cellular activities through binding to their mRNA targets, e.g. in cell proliferation, differentiation, death, growth control, and developmental timing. Accurate prediction of miRNA targets can assist efficient experimental investigations on the functional roles of miRNAs. Their prediction, however, remains a challengeable task due to the lack of experimental data about the tertiary structure of miRNA-target binding duplexes. In particular, correlations of nucleotides in the binding duplexes may not be limited to the canonical Watson Crick base pairs (BPs) as they have been perceived; methods based on secondary structure prediction (typically minimum free energy (MFE)) have only had mix success. In this work, we characterized miRNA binding duplexes with a graph model to capture the correlations between pairs of nucleotides of an miRNA and its target sequences. We developed machine learning algorithms to train the graph model to predict the target sites of miRNAs. In particular, because imbalance between positive and negative samples can significantly deteriorate the performance of machine learning methods, we designed a novel method to re-sample available dataset to produce more informative data learning process. We evaluated our model and miRNA target prediction method on human miRNAs and target data obtained from mirTarBase, a database of experimentally verified miRNA-target interactions. The performance of our method in target prediction achieved a sensitivity of 86% with a false positive rate below 13%. In comparison with the state-of-the-art methods miRanda and RNAhybrid on the test data, our method outperforms both of them by a significant margin. The source codes, test sets and model files all are available at http://rna-informatics.uga.edu/?f=software&p=GraB-miTarget .


Subject(s)
Algorithms , Computer Graphics , MicroRNAs/genetics , MicroRNAs/metabolism , Binding Sites , Computational Biology/methods , Databases, Genetic , False Positive Reactions , Humans , Machine Learning , MicroRNAs/chemistry , Models, Genetic , Nucleic Acid Heteroduplexes/chemistry , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/metabolism , Sensitivity and Specificity , Software
7.
Microbiology (Reading) ; 163(5): 789-803, 2017 May.
Article in English | MEDLINE | ID: mdl-28537542

ABSTRACT

Transcriptional regulators in the LysR or GntR families are typically encoded in the genomic neighbourhood of bacterial genes for malonate degradation. While these arrangements have been evaluated using bioinformatics methods, experimental studies demonstrating co-transcription of predicted operons were lacking. Here, transcriptional regulation was characterized for a cluster of mdc genes that enable a soil bacterium, Acinetobacter baylyi ADP1, to use malonate as a carbon source. Despite previous assumptions that the mdc-gene set forms one operon, our studies revealed distinct promoters in two different regions of a nine-gene cluster. Furthermore, a single promoter is insufficient to account for transcription of mdcR, a regulatory gene that is convergent to other mdc genes. MdcR, a LysR-type transcriptional regulator, was shown to bind specifically to a site where it can activate mdc-gene transcription. Although mdcR deletion prevented growth on malonate, a 1 nt substitution in the promoter of mdcA enabled MdcR-independent growth on this carbon source. Regulation was characterized by methods including transcriptional fusions, quantitative reverse transcription PCR, reverse transcription PCR, 5'-rapid amplification of cDNA ends and gel shift assays. Moreover, a new technique was developed for transcriptional characterization of low-copy mRNA by increasing the DNA copy number of specific chromosomal regions. MdcR was shown to respond to malonate, in the absence of its catabolism. These studies contribute to ongoing characterization of the structure and function of a set of 44 LysR-type transcriptional regulators in A. baylyi ADP1.

8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 10): 1995-2007, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24100318

ABSTRACT

LysR-type transcriptional regulators (LTTRs) play critical roles in metabolism and constitute the largest family of bacterial regulators. To understand protein-DNA interactions, atomic structures of the DNA-binding domain and linker-helix regions of a prototypical LTTR, BenM, were determined by X-ray crystallography. BenM structures with and without bound DNA reveal a set of highly conserved amino acids that interact directly with DNA bases. At the N-terminal end of the recognition helix (α3) of a winged-helix-turn-helix DNA-binding motif, several residues create hydrophobic pockets (Pro30, Pro31 and Ser33). These pockets interact with the methyl groups of two thymines in the DNA-recognition motif and its complementary strand, T-N11-A. This motif usually includes some dyad symmetry, as exemplified by a sequence that binds two subunits of a BenM tetramer (ATAC-N7-GTAT). Gln29 forms hydrogen bonds to adenine in the first position of the recognition half-site (ATAC). Another hydrophobic pocket defined by Ala28, Pro30 and Pro31 interacts with the methyl group of thymine, complementary to the base at the third position of the half-site. Arg34 interacts with the complementary base of the 3' position. Arg53, in the wing, provides AT-tract recognition in the minor groove. For DNA recognition, LTTRs use highly conserved interactions between amino acids and nucleotide bases as well as numerous less-conserved secondary interactions.


Subject(s)
Bacterial Proteins/chemistry , DNA-Binding Proteins/chemistry , Trans-Activators/chemistry , Transcription Factors/chemistry , Amino Acid Motifs/genetics , Bacterial Proteins/genetics , Base Sequence , Conserved Sequence/genetics , Crystallography, X-Ray , DNA-Binding Proteins/genetics , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Trans-Activators/genetics , Transcription Factors/genetics
9.
Mol Microbiol ; 83(3): 453-6, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22235937

ABSTRACT

LysR-type transcriptional regulators (LTTRs) compose the largest family of homologous regulators in bacteria. Considering their prevalence, it is not surprising that LTTRs control diverse metabolic functions. Arguably, the most unexpected aspect of LTTRs is the paucity of available structural information. Solubility issues are notoriously problematic, and structural studies have only recently begun to flourish. In this issue of Molecular Microbiology, Taylor et al. (2012) present the structure of AphB, a LysR-type regulator of virulence in Vibrio cholerae. This contribution adds significantly to the group of known full-length atomic LTTR structures, which remains small. Importantly, this report also describes an active-form variant. Small conformational changes in the effector-binding domain translate to global reorganization of the DNA-binding domain. Emerging from these results is a model of theme-and-variation among LTTRs rather than a unified regulatory scheme. Despite common structural folds, LTTRs exhibit differences in oligomerization, promoter recognition and communication with RNA polymerase. Such variation mirrors the diversity in sequence and function associated with members of this very large family.


Subject(s)
Bacterial Proteins/chemistry , Oxygen/chemistry , Trans-Activators/chemistry , Vibrio cholerae/chemistry
10.
J Mol Biol ; 404(4): 568-86, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-20932977

ABSTRACT

BenM, a LysR-type transcriptional regulator (LTTR) from the bacterium Acinetobacter baylyi, responds synergistically to benzoate and cis,cis-muconate. With these effectors, BenM activates gene expression during benzoate consumption. Without effectors, BenM represses transcription. Here, X-ray crystallography was used to determine the full-length structures of BenM and two variants that activate transcription without benzoate or cis,cis-muconate: BenM(R156H) and BenM(E226K). Previous studies indicate that these regulators function as tetramers. Here, interconnections between subunits in the crystals prevented the formation of a closed oligomer and highlighted the inherent flexibility of this multidomain regulator. Nevertheless, analysis of subunit interfaces suggested the functional significance of key interactions. The structures of BenM and its variants were nearly identical, implying that transcriptional differences rely on factors beyond major conformational changes defined solely by sequence. Comparisons of BenM with other LTTRs, including unpublished structures in the Protein Data Bank, revealed extensive variation in the relative orientations of DNA-binding domains (DBDs) and effector-binding domains (EBDs). To form dimers, different LTTRs used similar interfaces between two EBDs, each containing two subdomains: EBD-I and EBD-II. Surprisingly, the dimers used three substantially different schemes to form higher-order oligomers. In one scheme used by BenM, oligomer assembly involved contacts between the EBD-II regions and the DBD regions of adjacent subunits. In another scheme, there were no contacts between the EBDs; only the DBDs were involved in tetramer formation. In the third scheme, the oligomer interface involved DBD and EBD-I/EBD-II contacts. These diverse schemes demonstrate novel variation in the oligomeric structures of individual LTTRs within this large and important family.


Subject(s)
Acinetobacter/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Multimerization , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Substitution/genetics , Benzoates/metabolism , Crystallography, X-Ray , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation, Missense , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolism
11.
J Am Chem Soc ; 131(37): 13278-85, 2009 Sep 23.
Article in English | MEDLINE | ID: mdl-19719173

ABSTRACT

Demethylation is a key reaction in global mercury cycling. The bacterial organomercurial lyase, MerB, catalyzes the demethylation of a wide range of organomercurials via Hg-C protonolysis. Two strictly conserved cysteine residues in the active site are required for catalysis, but the source of the catalytic proton and the detailed reaction mechanism have not been determined. Here, the two major proposed reaction mechanisms of MerB are investigated and compared using hybrid density functional theory calculations. A model of the active site was constructed from an X-ray crystal structure of the Hg(II)-bound MerB product complex. Stationary point structures and energies characterized for the Hg-C protonolysis of methylmercury rule out the direct protonation mechanism in which a cysteine residue delivers the catalytic proton directly to the organic leaving group. Instead, the calculations support a two-step mechanism in which Cys96 or Cys159 first donates a proton to Asp99, enabling coordination of two thiolates with R-Hg(II). At the rate-limiting transition state, Asp99 protonates the nascent carbanion in a trigonal planar, bis thiol-ligated R-Hg(II) species to cleave the Hg-C bond and release the hydrocarbon product. Reactions with two other substrates, vinylmercury and cis-2-butenyl-2-mercury, were also modeled, and the computed activation barriers for all three organomercurial substrates reproduce the trend in the experimentally observed enzymatic reaction rates. Analysis of atomic charges in the rate-limiting transition state structure using Natural Population Analysis shows that MerB lowers the activation free energy in the Hg-C protonolysis reaction by redistributing electron density into the leaving group and away from the catalytic proton.


Subject(s)
Carbon/metabolism , Lyases/metabolism , Mercury/metabolism , Models, Molecular , Biocatalysis , Catalytic Domain , Lyases/chemistry , Quantum Theory , Water/metabolism
12.
Mol Microbiol ; 72(4): 881-94, 2009 May.
Article in English | MEDLINE | ID: mdl-19400783

ABSTRACT

BenM and CatM control transcription of a complex regulon for aromatic compound degradation. These Acinetobacter baylyi paralogues belong to the largest family of prokaryotic transcriptional regulators, the LysR-type proteins. Whereas BenM activates transcription synergistically in response to two effectors, benzoate and cis,cis-muconate, CatM responds only to cis,cis-muconate. Here, site-directed mutagenesis was used to determine the physiological significance of an unexpected benzoate-binding pocket in BenM discovered during structural studies. Residues in BenM were changed to match those of CatM in this hydrophobic pocket. Two BenM residues, R160 and Y293, were found to mediate the response to benzoate. Additionally, alteration of these residues caused benzoate to inhibit activation by cis,cis-muconate, positioned in a separate primary effector-binding site of BenM. The location of the primary site, in an interdomain cleft, is conserved in diverse LysR-type regulators. To improve understanding of this important family, additional regulatory mutants were analysed. The atomic-level structures were characterized of the effector-binding domains of variants that do not require inducers for activation, CatM(R156H) and BenM(R156H,T157S). These structures clearly resemble those of the wild-type proteins in their activated muconate-bound complexes. Amino acid replacements that enable activation without effectors reside at protein interfaces that may impact transcription through effects on oligomerization.


Subject(s)
Acinetobacter/genetics , Bacterial Proteins/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Acinetobacter/metabolism , Amino Acid Substitution , Bacterial Proteins/genetics , Benzoates/metabolism , Binding Sites , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Transcription Factors/genetics
13.
J Mol Biol ; 388(1): 98-108, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19265705

ABSTRACT

The Pseudomonas dacunhael-aspartate-beta-decarboxylase (ABDC, aspartate 4-decarboxylase, aspartate 4-carboxylyase, E.C. 4.1.1.12) is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the beta-decarboxylation of l-aspartate to produce l-alanine and CO(2). This catalytically versatile enzyme is known to form functional dodecamers at its optimal pH and is thought to work in conjunction with an l-Asp/l-Ala antiporter to establish a proton gradient across the membrane that can be used for ATP biosynthesis. We have solved the atomic structure of ABDC to 2.35 A resolution using single-wavelength anomalous dispersion phasing. The structure reveals that ABDC oligomerizes as a homododecamer in an unknown mode among PLP-dependent enzymes and has highest structural homology with members of the PLP-dependent aspartate aminotransferase subfamily. The structure shows that the ABDC active site is very similar to that of aspartate aminotransferase. However, an additional arginine side chain (Arg37) was observed flanking the re-side of the PLP ring in the ABDC active site. The mutagenesis results show that although Arg37 is not required for activity, it appears to be involved in the ABDC catalytic cycle.


Subject(s)
Carboxy-Lyases/chemistry , Pseudomonas/enzymology , Pyridoxal Phosphate/metabolism , Aspartate Aminotransferases/chemistry , Carboxy-Lyases/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Dimerization , Models, Molecular , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity
14.
J Med Chem ; 52(2): 389-96, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19143568

ABSTRACT

Homo sapiens kynureninase is a pyridoxal-5'-phosphate dependent enzyme that catalyzes the hydrolytic cleavage of 3-hydroxykynurenine to yield 3-hydroxyanthranilate and L-alanine as part of the tryptophan catabolic pathway leading to the de novo biosynthesis of NAD(+). This pathway results in quinolinate, an excitotoxin that is an NMDA receptor agonist. High levels of quinolinate have been correlated with the etiology of neurodegenerative disorders such as AIDS-related dementia and Alzheimer's disease. We have synthesized a novel kynureninase inhibitor, 3-hydroxyhippurate, cocrystallized it with human kynureninase, and solved the atomic structure. On the basis of an analysis of the complex, we designed a series of His-102, Ser-332, and Asn-333 mutants. The H102W/N333T and H102W/S332G/N333T mutants showed complete reversal of substrate specificity between 3-hydroxykynurenine and L-kynurenine, thus defining the primary residues contributing to substrate specificity in kynureninases.


Subject(s)
Hippurates/antagonists & inhibitors , Hydrolases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Crystallography, X-Ray , DNA Primers , Hippurates/chemistry , Humans , Hydrogen Bonding , Hydrolases/chemistry , Hydrolases/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid , Substrate Specificity
15.
Article in English | MEDLINE | ID: mdl-17565172

ABSTRACT

LysR-type transcriptional regulators comprise the largest family of homologous regulatory DNA-binding proteins in bacteria. A problematic challenge in the crystallization of LysR-type regulators stems from the insolubility and precipitation difficulties encountered with high concentrations of the full-length versions of these proteins. A general oligomerization scheme is proposed for this protein family based on the structures of the effector-binding domain of BenM in two different space groups, P4(3)22 and C222(1). These structures used the same oligomerization scheme of dimer-dimer interactions as another LysR-type regulator, CbnR, the full-length structure of which is available [Muraoka et al. (2003), J. Mol. Biol. 328, 555-566]. Evaluation of packing relationships and surface features suggests that BenM can form infinite oligomeric arrays in crystals through these dimer-dimer interactions. By extrapolation to the liquid phase, such dimer-dimer interactions may contribute to the significant difficulty in crystallizing full-length members of this family. The oligomerization of dimeric units to form biologically important tetramers appears to leave unsatisfied oligomerization sites. Under conditions that favor association, such as neutral pH and concentrations appropriate for crystallization, higher order oligomerization could cause solubility problems with purified proteins. A detailed model by which BenM and other LysR-type transcriptional regulators may form these arrays is proposed.


Subject(s)
Bacterial Proteins/chemistry , Biopolymers/chemistry , Transcription Factors/chemistry , Crystallization , Crystallography , Models, Molecular , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry
16.
J Mol Biol ; 367(3): 616-29, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17291527

ABSTRACT

BenM, a bacterial transcriptional regulator, responds synergistically to two effectors, benzoate and cis,cis-muconate. CatM, a paralog with overlapping function, responds only to muconate. Structures of their effector-binding domains revealed two effector-binding sites in BenM. BenM and CatM are the first LysR-type regulators to be structurally characterized while bound with physiologically relevant exogenous inducers. The effector complexes were obtained by soaking crystals with stabilizing solutions containing high effector concentrations and minimal amounts of competing ions. This strategy, including data collection with fragments of fractured crystals, may be generally applicable to related proteins. In BenM and CatM, the binding of muconate to an interdomain pocket was facilitated by helix dipoles that provide charge stabilization. In BenM, benzoate also bound in an adjacent hydrophobic region where it alters the effect of muconate bound in the primary site. A charge relay system within the BenM protein appears to underlie synergistic transcriptional activation. According to this model, Glu162 is a pivotal residue that forms salt-bridges with different arginine residues depending on the occupancy of the secondary effector-binding site. Glu162 interacts with Arg160 in the absence of benzoate and with Arg146 when benzoate is bound. This latter interaction enhances the negative charge of muconate bound to the adjacent primary effector-binding site. The redistribution of the electrostatic potential draws two domains of the protein more closely towards muconate, with the movement mediated by the dipole moments of four alpha helices. Therefore, with both effectors, BenM achieves a unique conformation capable of high level transcriptional activation.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Acinetobacter/genetics , Acinetobacter/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Base Sequence , Benzoates/metabolism , Binding Sites , Crystallography, X-Ray , DNA Primers/genetics , DNA, Bacterial/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ligands , Macromolecular Substances , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Folding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Sorbic Acid/analogs & derivatives , Sorbic Acid/metabolism , Transcription Factors/genetics , Transcriptional Activation
17.
Biochemistry ; 46(10): 2735-44, 2007 Mar 13.
Article in English | MEDLINE | ID: mdl-17300176

ABSTRACT

Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.


Subject(s)
Hydrolases/chemistry , Kynurenine/metabolism , Amino Acid Sequence , Crystallization , Humans , Hydrolases/genetics , Hydrolases/metabolism , Kinetics , Models, Molecular , Protein Conformation , Pseudomonas fluorescens/chemistry , Pseudomonas fluorescens/enzymology , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity
18.
Protein Expr Purif ; 52(1): 219-29, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17141527

ABSTRACT

A mutagenized mouse recombinant antibody fragment (rFab) that recognized HIV capsid protein was isolated from Escherichia coli at a level of 12 mg per liter of culture using standard shake flask methods. This is one of the highest yields of a modified antibody fragment obtained using non-fermentor-based methods. Recombinant Fab was isolated directly from the culture medium, which lacked complex materials such as tryptone and yeast extract. Fab isolated from the periplasm was not as homogeneous as that isolated directly from the culture medium. Optimization of the culture medium using recently developed media, the use of E. coli cell lines that contained rare tRNA codons, and mutagenesis of the Fab to improve the stability of the Fab were important factors in producing high-levels of the Fab. An isolation protocol easily adaptable to automation using a thiophilic-sepharose column followed by metal-chelate chromatography and the introduction of a non-traditional metal binding site for metal-chelate purification that bypasses the conventional hexahistidine tag cleavage step (to prevent the purification tag from interfering with crystallization) are additional features of this approach to produce a highly homogenous preparation of rFab. The resulting rFab binds to its antigen, p24, equivalent in character to the monoclonal from which the rFab was originally derived.


Subject(s)
Escherichia coli/genetics , Immunoglobulin Fragments/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Escherichia coli/immunology , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Mice , Molecular Sequence Data , Mutagenesis , Recombinant Proteins/immunology , Sequence Alignment , Sequence Homology, Amino Acid
19.
Microbiology (Reading) ; 150(Pt 10): 3261-8, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15470106

ABSTRACT

Aspergillus fumigatus is a life-threatening and increasingly frequent pathogen of the immunocompromised. Like other filamentous fungi A. fumigatus grows in a highly polar manner, adding new cell wall to the apical region of hyphae. mAbs were raised against isolated A. fumigatus cell walls. Fifteen antibodies bound reproducibly to isolated cell walls in ELISAs and to the walls of intact cells in immunofluorescence experiments. Surprisingly, individual mAbs showed distinct patterns of localization. Six antibodies labelled exclusively conidial or basal regions, seven labelled apical regions and a single antibody labelled both basal and apical regions of hyphae. Ten antibodies did not label the walls adjacent to septa. In double labelling experiments with representative mAbs there was little or no overlap between epitopes recognized. These labelling patterns suggest that the wall is made up of basal and apical domains that differ in composition or organization and that the wall region flanking septa differs from other regions of the lateral wall. In time-course experiments of early A. fumigatus growth, mAb16C4 failed to label isotropically expanding cells and labelled emerging germ tubes and branches. The same mAb failed to label the Aspergillus nidulans swoC mutant, which is defective in polarity establishment. However, mAb16C4 did label the A. nidulans swoA mutant, which completes polarity establishment, but is defective in polarity maintenance. Thus, mAb16C4 appears to recognize a cell wall change that occurs during polarity establishment. In immunogold labelling and transmission electron microscopy (TEM) experiments, conidia, basal regions and apical regions of thin-sectioned cells labelled with mAb16C4. That only apical regions labelled in intact cells (immunofluorescence) while conidial, basal and apical regions labelled in thin-sectioned cells (TEM) suggests that the 16C4 epitope is present along the whole hypha, but is masked everywhere except the tip until polarity establishment. That is to say, some remodelling of the wall during polarity establishment exposes the 16C4 epitope. The 16C4 epitope was partially purified from A. fumigatus total protein by passage through hydrophobic interaction and anion-exchange columns. The resulting single ELISA-positive fraction showed relatively few bands by SDS-PAGE and silver staining and a strong band by Western blotting with the16C4 mAb. Sequencing of the fraction yielded a predicted peptide with a 6-amino acid exact match to a region of the Cat1 protein previously identified as an immunodominant A. fumigatus catalase that localizes to the cell wall and is secreted to the medium. Experiments are under way to determine if mAb16C4 recognizes Cat1 or another protein that co-purifies with Cat1.


Subject(s)
Aspergillus nidulans/physiology , Cell Polarity/physiology , Cell Wall/physiology , Antigens, Fungal/immunology , Aspergillus nidulans/cytology , Cell Differentiation/physiology , Cell Size , Gene Expression Regulation, Fungal , Morphogenesis
20.
Biochemistry ; 43(5): 1193-203, 2004 Feb 10.
Article in English | MEDLINE | ID: mdl-14756555

ABSTRACT

Kynureninase [E.C. 3.7.1.3] is a pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the hydrolytic cleavage of l-kynurenine to anthranilic acid and l-alanine. Sequence alignment with other PLP-dependent enzymes indicated that kynureninase is in subgroup IVa of the aminotransferases, along with nifS, CsdB, and serine-pyruvate aminotransferase, which suggests that kynureninase has an aminotransferase fold. Crystals of Pseudomonas fluorescens kynureninase were obtained, and the structure was solved by molecular replacement using the CsdB coordinates combined with multiple isomorphous heavy atom replacement. The coordinates were deposited in the PDB (ID code 1QZ9). The structure, refined to an R factor of 15.5% to 1.85 A resolution, is dimeric and has the aminotransferase fold. The structure also confirms the prediction from sequence alignment that Lys-227 is the PLP-binding residue in P. fluorescens kynureninase. The conserved Asp-201, expected for an aminotransferase fold, is located near the PLP nitrogen, but Asp-132 is also strictly conserved and at a similar distance from the pyridinium nitrogen. Mutagenesis of both conserved aspartic acids shows that both contribute equally to PLP binding, but Asp-201 has a greater role in catalysis. The structure shows that Tyr-226 donates a hydrogen bond to the phosphate of PLP. Unusual among PLP-dependent enzymes, Trp-256, which is also strictly conserved in kynureninases from bacteria to humans, donates a hydrogen bond to the phosphate through the indole N1-hydrogen.


Subject(s)
Hydrolases/chemistry , Pseudomonas fluorescens/enzymology , Alanine/genetics , Amino Acid Sequence , Aspartic Acid/genetics , Bacterial Proteins/chemistry , Binding Sites/genetics , Crystallization , Crystallography, X-Ray , Glutamic Acid/genetics , Humans , Hydrolases/genetics , Hydrolases/isolation & purification , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Folding , Pseudomonas fluorescens/genetics , Pyridoxal Phosphate/chemistry , Sequence Alignment , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...