Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38005868

ABSTRACT

Zika virus (ZIKV) has become endemic in multiple tropical and subtropical regions and has the potential to become widespread in countries with limited prior exposure to this infection. One of the most concerning sequelae of ZIKV infection is the teratogenic effect on the developing fetus, with the mechanisms of viral spread to and across the placenta remaining largely unknown. Although vaccine trials and prophylactic or therapeutic treatments are being studied, there are no approved treatments or vaccines for ZIKV. Appropriate tests, including potency and in vivo assays to assess the safety and efficacy of these modalities, can greatly aid both the research of the pathophysiology of the infection and the development of anti-ZIKV therapeutics. Building on previous work, we tested reporter ZIKV variants that express nanoluciferase in cell culture and in vivo assays. We found that these variants can propagate in cells shown to be susceptible to the widely used clinical isolate PRVABC59, including Vero and human placenta cell lines. When used in neutralization assays with bioluminescence as readout, these variants gave rise to neutralization curves similar to those produced by PRVABC59, while being better suited for performing high-throughput assays. In addition, the engineered reporter variants can be useful research tools when used in other in vitro and in vivo assays, as we illustrated in transcytosis experiments and a pilot study in guinea pigs.


Subject(s)
Zika Virus Infection , Zika Virus , Pregnancy , Female , Humans , Animals , Guinea Pigs , Pilot Projects , Antibodies, Neutralizing , Cell Line , Antibodies, Viral
2.
Vaccines (Basel) ; 10(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36560469

ABSTRACT

As a developmental toxicant, Zika virus (ZIKV) attacks both the growing nervous system, causing congenital Zika syndrome, and the placenta, resulting in pathological changes and associated adverse fetal outcomes. There are no vaccines, antibodies, or other treatments for ZIKV, despite the potential for its re-emergence. Multiple studies have highlighted the risk of antibodies for enhancing ZIKV infection, including during pregnancy, but the mechanisms for such effects are not fully understood. We have focused on the ability of the neonatal Fc receptor (FcRn) to interact with ZIKV in the presence and absence of relevant antibodies. We found that ZIKV replication was higher in Marvin Darby Canine Kidney (MDCK) cells that overexpress FcRn compared to those that do not, and knocking down FcRn decreased ZIKV RNA production. In the placenta trophoblast BeWo cell line, ZIKV infection itself downregulated FcRn at the mRNA and protein levels. Addition of anti-ZIKV antibodies to MDCK/FcRn cells resulted in non-monotonous neutralization curves with neutralization attenuation and even enhancement of infection at higher concentrations. Non-monotonous neutralization was also seen in BeWo cells at intermediate antibody concentrations. Our studies highlight the underappreciated role FcRn plays in ZIKV infection and may have implications for anti-ZIKV prophylaxis and therapy in pregnant women.

3.
J Phys Chem B ; 125(21): 5466-5478, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34015215

ABSTRACT

"Pink" or 1/f noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/f power spectral density. In the anthrax toxin channel (PA63), it appears as fast voltage-independent current interruptions between conducting and nonconducting states. This behavior hampers potential development of PA63 as an ion-channel biosensor. On the bright side, the PA63 flickering represents a mesmerizing phenomenon to investigate. Notably, similar 1/f fluctuations are observed in the channel-forming components of clostridial binary C2 and iota toxins, which share functional and structural similarities with the anthrax toxin channel. Similar to PA63, they are evolved to translocate the enzymatic components of the toxins into the cytosol. Here, using high-resolution single-channel lipid bilayer experiments and all-atom molecular dynamic simulations, we suggest that the 1/f noise in PA63 occurs as a result of "hydrophobic gating" at the ϕ-clamp region, the phenomenon earlier observed in several water-filled channels "fastened" inside by the hydrophobic belts. The ϕ-clamp is a narrow "hydrophobic ring" in the PA63 lumen formed by seven or eight phenylalanine residues at position 427, conserved in the C2 and iota toxin channels, which catalyzes protein translocation. Notably, the 1/f noise remains undetected in the F427A PA63 mutant. This finding can elucidate the functional purpose of 1/f noise and its possible role in the transport of the enzymatic components of binary toxins.


Subject(s)
Bacterial Toxins , Antigens, Bacterial , Ion Channels , Lipid Bilayers
4.
Vaccines (Basel) ; 9(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670199

ABSTRACT

Zika virus (ZIKV) infections have been associated with an increased incidence of severe microcephaly and other neurodevelopmental disorders in newborn babies. Passive immunization with anti-ZIKV neutralizing antibodies has the potential to become a feasible treatment or prophylaxis option during pregnancy. Prior to clinical use, such antibodies should be assessed for their ability to block ZIKV passage to the fetus. We used human placental and mammalian cell monolayers that express FcRn and laboratory preparations of anti-ZIKV antibodies as a model system to investigate the disposition of ZIKV/antibody immune complexes (ICs) at the maternal-fetal interface. We further characterized solution properties of the ICs to evaluate whether these are related to in vitro effects. We found that both ZIKV and ZIKV envelope glycoprotein can enter and passage through epithelial cells, especially those that overexpress FcRn. In the presence of ZIKV antibodies, Zika virus entry was bimodal, with reduced entry at the lowest (0.3-3 ng/mL) and highest (µg/mL) antibody concentrations. Intermediate concentrations attenuated inhibition or enhanced viral entry. With respect to anti-ZIKV antibodies, we found that their degradation was accelerated when presented as ICs containing increased amounts of ZIKV immunogen. Of the two monoclonal antibodies tested, the preparation with higher aggregation also exhibited higher degradation. Our studies confirm that intact Zika virus and its envelope immunogen have the potential to enter and be transferred across placental and other epithelial cells that express FcRn. Presence of anti-ZIKV IgG antibodies can either block or enhance cellular entry, with the antibody concentration playing a complex role in this process. Physicochemical properties of IgG antibodies can influence their degradation in vitro.

5.
Biophys J ; 117(9): 1751-1763, 2019 11 05.
Article in English | MEDLINE | ID: mdl-31587826

ABSTRACT

Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA63) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA63 more effectively. To understand the physical basis of PA63 selectivity for a particular ligand, detailed information is required on how the blocker structural elements (e.g., positively charged and aromatic groups) influence the molecular kinetics of the blocker/channel binding reactions. In this study, we address this problem using the high-resolution single-channel planar lipid bilayer technique. Several structurally distinct cationic blockers, namely per-6-S-(3-amino) propyl-ß-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-α-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-ß-cyclodextrin, per-6-S-(3-aminomethyl) benzyl-γ-cyclodextrin, methyltriphenylphosphonium ion, and G0 polyamidoamine dendrimer are tested for their ability to inhibit the heptameric and octameric PA63 variants and PA63F427A mutant. The F427 residues form a hydrophobic constriction region inside the channel, known as the "ϕ-clamp." We show that the cationic blockers interact with PA63 through a combination of forces. Analysis of the binding reaction kinetics suggests the involvement of cation-π, Coulomb, and salt-concentration-independent π-π or hydrophobic interactions in the cationic cyclodextrin binding. It is possible that these blockers bind to the ϕ-clamp and are also stabilized by the Coulomb interactions of their terminal amino groups with the water-exposed negatively charged channel residues. In PA63F427A, only the suggested Coulomb component of the cyclodextrin interaction remains. Methyltriphenylphosphonium ion and G0 polyamidoamine dendrimer, despite being positively charged, interact primarily with the ϕ-clamp. We also show that seven- and eightfold symmetric cyclodextrins effectively block the heptameric and octameric forms of PA63 interchangeably, adding flexibility to the earlier formulated blocker/target symmetry match requirement.


Subject(s)
Antigens, Bacterial/chemistry , Bacterial Toxins/chemistry , Cations , Dendrimers/chemistry , Kinetics , Onium Compounds/chemistry , Time Factors , Trityl Compounds/chemistry , beta-Cyclodextrins/chemistry
6.
Biochim Biophys Acta Biomembr ; 1860(11): 2192-2203, 2018 11.
Article in English | MEDLINE | ID: mdl-30409515

ABSTRACT

Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA63) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding. Interestingly, the highest PA63 insertion rate was observed in bis(monoacylglycero)phosphate membranes. The molecular dynamics simulation data show that the conformational properties of the channel are different in bis(monoacylglycero)phosphate compared to PC, PE, and PS lipids. The anthrax toxin protein/lipid bilayer system can be advanced as a novel robust model to directly investigate lipid influence on membrane protein properties and protein/protein interactions.


Subject(s)
Antigens, Bacterial/physiology , Endosomes/metabolism , Lipid Bilayers/metabolism , Antigens, Bacterial/metabolism , Bacterial Toxins/metabolism , Biochemical Phenomena , Biological Transport , Electrophysiological Phenomena , Molecular Dynamics Simulation , Protein Binding
7.
FEBS Lett ; 591(21): 3481-3492, 2017 11.
Article in English | MEDLINE | ID: mdl-28963849

ABSTRACT

Tight regulation of pH is critical for the structure and function of cells and organelles. The pH environment changes dramatically along the endocytic pathway, an internalization transport process that is 'hijacked' by many intracellularly active bacterial exotoxins, including the anthrax toxin. Here, we investigate the role of pH on single-channel properties of the anthrax toxin protective antigen (PA63 ). Using conductance and current noise analysis, blocker binding, ion selectivity, and poly(ethylene glycol) partitioning measurements, we show that the channel exists in two different open states ('maximum' and 'main') at pH ≥ 5.5, while only a maximum conductance state is detected at pH < 5.5. We describe two substantially distinct patterns of PA63 conductance dependence on KCl concentration uncovered at pH 6.5 and 4.5.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Toxins/metabolism , Endosomes/metabolism , Ion Channels/metabolism , Animals , Antigens, Bacterial/chemistry , Bacterial Toxins/chemistry , Cell Line , Endosomes/chemistry , Humans , Hydrogen-Ion Concentration , Ion Channels/chemistry , Ion Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...