Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Artif Intell ; 6(3): e230033, 2024 May.
Article in English | MEDLINE | ID: mdl-38597785

ABSTRACT

Purpose To evaluate the ability of a semiautonomous artificial intelligence (AI) model to identify screening mammograms not suspicious for breast cancer and reduce the number of false-positive examinations. Materials and Methods The deep learning algorithm was trained using 123 248 two-dimensional digital mammograms (6161 cancers) and a retrospective study was performed on three nonoverlapping datasets of 14 831 screening mammography examinations (1026 cancers) from two U.S. institutions and one U.K. institution (2008-2017). The stand-alone performance of humans and AI was compared. Human plus AI performance was simulated to examine reductions in the cancer detection rate, number of examinations, false-positive callbacks, and benign biopsies. Metrics were adjusted to mimic the natural distribution of a screening population, and bootstrapped CIs and P values were calculated. Results Retrospective evaluation on all datasets showed minimal changes to the cancer detection rate with use of the AI device (noninferiority margin of 0.25 cancers per 1000 examinations: U.S. dataset 1, P = .02; U.S. dataset 2, P < .001; U.K. dataset, P < .001). On U.S. dataset 1 (11 592 mammograms; 101 cancers; 3810 female patients; mean age, 57.3 years ± 10.0 [SD]), the device reduced screening examinations requiring radiologist interpretation by 41.6% (95% CI: 40.6%, 42.4%; P < .001), diagnostic examinations callbacks by 31.1% (95% CI: 28.7%, 33.4%; P < .001), and benign needle biopsies by 7.4% (95% CI: 4.1%, 12.4%; P < .001). U.S. dataset 2 (1362 mammograms; 330 cancers; 1293 female patients; mean age, 55.4 years ± 10.5) was reduced by 19.5% (95% CI: 16.9%, 22.1%; P < .001), 11.9% (95% CI: 8.6%, 15.7%; P < .001), and 6.5% (95% CI: 0.0%, 19.0%; P = .08), respectively. The U.K. dataset (1877 mammograms; 595 cancers; 1491 female patients; mean age, 63.5 years ± 7.1) was reduced by 36.8% (95% CI: 34.4%, 39.7%; P < .001), 17.1% (95% CI: 5.9%, 30.1%: P < .001), and 5.9% (95% CI: 2.9%, 11.5%; P < .001), respectively. Conclusion This work demonstrates the potential of a semiautonomous breast cancer screening system to reduce false positives, unnecessary procedures, patient anxiety, and medical expenses. Keywords: Artificial Intelligence, Semiautonomous Deep Learning, Breast Cancer, Screening Mammography Supplemental material is available for this article. Published under a CC BY 4.0 license.


Subject(s)
Breast Neoplasms , Deep Learning , Mammography , Humans , Mammography/methods , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Retrospective Studies , Middle Aged , False Positive Reactions , Early Detection of Cancer/methods , Aged , Radiographic Image Interpretation, Computer-Assisted/methods , United States/epidemiology , Adult
2.
Radiol Artif Intell ; 3(1): e200015, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33937850

ABSTRACT

PURPOSE: To develop a Breast Imaging Reporting and Data System (BI-RADS) breast density deep learning (DL) model in a multisite setting for synthetic two-dimensional mammographic (SM) images derived from digital breast tomosynthesis examinations by using full-field digital mammographic (FFDM) images and limited SM data. MATERIALS AND METHODS: A DL model was trained to predict BI-RADS breast density by using FFDM images acquired from 2008 to 2017 (site 1: 57 492 patients, 187 627 examinations, 750 752 images) for this retrospective study. The FFDM model was evaluated by using SM datasets from two institutions (site 1: 3842 patients, 3866 examinations, 14 472 images, acquired from 2016 to 2017; site 2: 7557 patients, 16 283 examinations, 63 973 images, 2015 to 2019). Each of the three datasets were then split into training, validation, and test. Adaptation methods were investigated to improve performance on the SM datasets, and the effect of dataset size on each adaptation method was considered. Statistical significance was assessed by using CIs, which were estimated by bootstrapping. RESULTS: Without adaptation, the model demonstrated substantial agreement with the original reporting radiologists for all three datasets (site 1 FFDM: linearly weighted Cohen κ [κw] = 0.75 [95% CI: 0.74, 0.76]; site 1 SM: κw = 0.71 [95% CI: 0.64, 0.78]; site 2 SM: κw = 0.72 [95% CI: 0.70, 0.75]). With adaptation, performance improved for site 2 (site 1: κw = 0.72 [95% CI: 0.66, 0.79], 0.71 vs 0.72, P = .80; site 2: κw = 0.79 [95% CI: 0.76, 0.81], 0.72 vs 0.79, P < .001) by using only 500 SM images from that site. CONCLUSION: A BI-RADS breast density DL model demonstrated strong performance on FFDM and SM images from two institutions without training on SM images and improved by using few SM images.Supplemental material is available for this article.Published under a CC BY 4.0 license.

SELECTION OF CITATIONS
SEARCH DETAIL
...