Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 207: 106127, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34051412

ABSTRACT

BACKGROUND AND OBJECTIVE: Cerebral microbleeds (CMB) are important biomarkers of cerebrovascular diseases and cognitive dysfunctions. Susceptibility weighted imaging (SWI) is a common MRI sequence where CMB appear as small hypointense blobs. The prevalence of CMB in the population and in each scan is low, resulting in tedious and time-consuming visual assessment. Automated detection methods would be of value but are challenged by the CMB low prevalence, the presence of mimics such as blood vessels, and the difficulty to obtain sufficient ground truth for training and testing. In this paper, synthetic CMB (sCMB) generation using an analytical model is proposed for training and testing machine learning methods. The main aim is creating perfect synthetic ground truth as similar as reals, in high number, with a high diversity of shape, volume, intensity, and location to improve training of supervised methods. METHOD: sCMB were modelled with a random Gaussian shape and added to healthy brain locations. We compared training on our synthetic data to standard augmentation techniques. We performed a validation experiment using sCMB and report result for whole brain detection using a 10-fold cross validation design with an ensemble of 10 neural networks. RESULTS: Performance was close to state of the art (~9 false positives per scan), when random forest was trained on synthetic only and tested on real lesion. Other experiments showed that top detection performance could be achieved when training on synthetic CMB only. Our dataset is made available, including a version with 37,000 synthetic lesions, that could be used for benchmarking and training. CONCLUSION: Our proposed synthetic microbleeds model is a powerful data augmentation approach for CMB classification with and should be considered for training automated lesion detection system from MRI SWI.


Subject(s)
Cerebral Hemorrhage , Magnetic Resonance Imaging , Brain , Cerebral Hemorrhage/diagnostic imaging , Humans , Machine Learning , Neural Networks, Computer
2.
J Water Process Eng ; 43: 102224, 2021 Oct.
Article in English | MEDLINE | ID: mdl-35592836

ABSTRACT

Long is the way and hard, that out of COVID-19 leads up to light. The virus is highly contagious and spread rapidly and the number of infections increases exponentially. The colossal number of infections and presence of the novel coronavirus RNA in human wastes (e.g. Excreta/urine) even after the patients recovered and the RT-PCR tests were negative, results in massive load of the viral in water environments. Numerous studies reported the presence of SARS-CoV-2 in wastewater samples. The risk of contaminating water bodies in the regions which suffer from the lack of proper sanitation system and wastewater treatment plants (mostly in developing countries) is higher. Since solar water disinfection (SODIS) is usually used by people in developing countries, there is a concern about using this method during the pandemic. Because the SARS-CoV-2 can be eliminated by high temperature (>56 °C) and UVC wavelength (100-280 nm) while SODIS systems mainly work at lower temperature (<45 °C) and use the available UVA (315-400 nm). Thus, during a situation like the ongoing pandemic using SODIS method for wastewater treatment (or providing drinking water) is not a reliable method. It should be reminded that the main aim of the present study is not just to give insights about the possibilities and risks of using SODIS during the ongoing pandemic but it has broader prospect for any future outbreak/pandemic that results in biological contamination of water bodies. Nevertheless, some experimental studies seem to be necessary by all researchers under conditions similar to developing countries.

3.
Front Neurosci ; 15: 778767, 2021.
Article in English | MEDLINE | ID: mdl-34975381

ABSTRACT

Cerebral microbleeds (CMB) are increasingly present with aging and can reveal vascular pathologies associated with neurodegeneration. Deep learning-based classifiers can detect and quantify CMB from MRI, such as susceptibility imaging, but are challenging to train because of the limited availability of ground truth and many confounding imaging features, such as vessels or infarcts. In this study, we present a novel generative adversarial network (GAN) that has been trained to generate three-dimensional lesions, conditioned by volume and location. This allows one to investigate CMB characteristics and create large training datasets for deep learning-based detectors. We demonstrate the benefit of this approach by achieving state-of-the-art CMB detection of real CMB using a convolutional neural network classifier trained on synthetic CMB. Moreover, we showed that our proposed 3D lesion GAN model can be applied on unseen dataset, with different MRI parameters and diseases, to generate synthetic lesions with high diversity and without needing laboriously marked ground truth.

4.
J Med Syst ; 38(8): 70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24957394

ABSTRACT

Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.


Subject(s)
Angiography, Digital Subtraction/methods , Fuzzy Logic , Image Interpretation, Computer-Assisted/methods , Wavelet Analysis , Algorithms , Brain/diagnostic imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...