Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Genomics ; 291(2): 703-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26527082

ABSTRACT

Leptospirosis is an emerging zoonosis with important economic and public health consequences and is caused by pathogenic leptospires. The genus Leptospira belongs to the order Spirochaetales and comprises saprophytic (L. biflexa), pathogenic (L. interrogans) and host-dependent (L. borgpetersenii) members. Here, we present an in silico search for DNA repair pathways in Leptospira spp. The relevance of such DNA repair pathways was assessed through the identification of mRNA levels of some genes during infection in animal model and after exposition to spleen cells. The search was performed by comparison of available Leptospira spp. genomes in public databases with known DNA repair-related genes. Leptospires exhibit some distinct and unexpected characteristics, for instance the existence of a redundant mechanism for repairing a chemically diverse spectrum of alkylated nucleobases, a new mutS-like gene and a new shorter version of uvrD. Leptospira spp. shares some characteristics from Gram-positive, as the presence of PcrA, two RecQ paralogs and two SSB proteins; the latter is considered a feature shared by naturally competent bacteria. We did not find a significant reduction in the number of DNA repair-related genes in both pathogenic and host-dependent species. Pathogenic leptospires were enriched for genes dedicated to base excision repair and non-homologous end joining. Their evolutionary history reveals a remarkable importance of lateral gene transfer events for the evolution of the genus. Up-regulation of specific DNA repair genes, including components of SOS regulon, during infection in animal model validates the critical role of DNA repair mechanisms for the complex interplay between host/pathogen.


Subject(s)
DNA Repair/genetics , Leptospira/genetics , Leptospirosis/genetics , Animals , Gene Expression Regulation, Bacterial , Genome, Bacterial , Host-Pathogen Interactions/genetics , Leptospirosis/microbiology , Mesocricetus , Models, Animal , Phylogeny , Zoonoses/genetics , Zoonoses/microbiology
2.
PLoS One ; 8(10): e76419, 2013.
Article in English | MEDLINE | ID: mdl-24098496

ABSTRACT

Bacteria activate a regulatory network in response to the challenges imposed by DNA damage to genetic material, known as the SOS response. This system is regulated by the RecA recombinase and by the transcriptional repressor lexA. Leptospira interrogans is a pathogen capable of surviving in the environment for weeks, being exposed to a great variety of stress agents and yet retaining its ability to infect the host. This study aims to investigate the behavior of L. interrogans serovar Copenhageni after the stress induced by DNA damage. We show that L. interrogans serovar Copenhageni genome contains two genes encoding putative LexA proteins (lexA1 and lexA2) one of them being potentially acquired by lateral gene transfer. Both genes are induced after DNA damage, but the steady state levels of both LexA proteins drop, probably due to auto-proteolytic activity triggered in this condition. In addition, seven other genes were up-regulated following UV-C irradiation, recA, recN, dinP, and four genes encoding hypothetical proteins. This set of genes is potentially regulated by LexA1, as it showed binding to their promoter regions. All these regions contain degenerated sequences in relation to the previously described SOS box, TTTGN 5CAAA. On the other hand, LexA2 was able to bind to the palindrome TTGTAN10TACAA, found in its own promoter region, but not in the others. Therefore, the L. interrogans serovar Copenhageni SOS regulon may be even more complex, as a result of LexA1 and LexA2 binding to divergent motifs. New possibilities for DNA damage response in Leptospira are expected, with potential influence in other biological responses such as virulence.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Dosage , Leptospira interrogans/genetics , Leptospira interrogans/metabolism , SOS Response, Genetics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Binding Sites , DNA Repair/genetics , Gene Expression Regulation, Bacterial/radiation effects , Gene Order , Genome, Bacterial , Leptospira interrogans/classification , Leptospira interrogans/radiation effects , Molecular Sequence Data , Nucleotide Motifs , Open Reading Frames , Phenotype , Phylogeny , Promoter Regions, Genetic , Protein Binding , Sequence Alignment , Serine Endopeptidases/chemistry , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...