Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(13): 18882-18890, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34705206

ABSTRACT

4-Nonylphenol (4-NP) is an endocrine-disrupting and persistent chemical and is partially degraded in conventional wastewater treatment processes. Ferrate(VI) can be used as an environment-friendly oxidizing agent to mediate 4-NP degradation. Thus, this paper evaluates the biodegradability of 4-NP and its degradation products after the addition of ferrate(VI). The biodegradability was examined using NP labeled with 14C as a tracer and activated sludge microorganisms as an inoculum. The addition of ferrate(VI) to the 4-NP solution spiked with the tracer resulted in no remarkable decrease in the concentration of 14C, indicating incomplete mineralization of 4-NP and formation of degradation products. The degradation products from 4-NP with Fe(VI) were estimated based on mass spectra, which detected a unique peak at m/z 223 at low intensity. Four hydrogen atoms might have been added to 4-NP by degradation with Fe(VI). In addition, the effect of ferrate(VI) concentration on the estrogenic activity of 4-NP in an aqueous solution was investigated using a yeast bioassay. The results show that estrogenic activity was significantly decreased at a mass ratio of Fe(VI) to 4-NP greater than or equal to 2.5.


Subject(s)
Water Pollutants, Chemical , Iron/chemistry , Oxidation-Reduction , Phenols , Water Pollutants, Chemical/analysis
2.
Chemosphere ; 236: 124399, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31548172

ABSTRACT

Nonylphenol (NP) and nonylphenol monoethoxylate (NP1EO) have toxic and persistent characteristics, and are incompletely degraded in conventional wastewater treatment processes. These compounds are present in sewage sludge that can be reused as fertilizers or soil conditioners. Accordingly, NP and NP1EO should be properly removed before being discharged in the environment. In this study, potassium ferrate (K2FeO4) containing hexavalent iron (Fe(VI)) was used as an environment-friendly oxidizing agent to mediate NP and NP1EO degradation. The aim of this study was to investigate the effects of pH and Fe(VI) dosage on the degradation of NP and NP1EO in water and anaerobically digested sewage sludge samples. In water samples, under conditions examined in this study, maximum removal efficiencies for NP and NP1EO were 98% and 92%, respectively. For digested sewage sludge samples, the maximum removal efficiencies of NP and NP1EO were 58% and 96%, respectively. The results demonstrated that Fe(VI) can potentially degrade NP and NP1EO in water and digested sewage sludge samples. However, organic matter as a matrix in the sludge sample would inhibit the degradation of NP and NP1EO by Fe(VI). The pH values before and after adding K2FeO4 to the samples had an obvious influence on the removal of NP and NP1EO.


Subject(s)
Iron/chemistry , Phenols/chemistry , Sewage/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/chemistry , Anaerobiosis , Hydrogen-Ion Concentration , Iron Compounds/chemistry , Phenols/analysis , Potassium Compounds/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...