Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Sci Sleep ; 16: 555-572, 2024.
Article in English | MEDLINE | ID: mdl-38827394

ABSTRACT

Purpose: This study aims to enhance the clinical use of automated sleep-scoring algorithms by incorporating an uncertainty estimation approach to efficiently assist clinicians in the manual review of predicted hypnograms, a necessity due to the notable inter-scorer variability inherent in polysomnography (PSG) databases. Our efforts target the extent of review required to achieve predefined agreement levels, examining both in-domain (ID) and out-of-domain (OOD) data, and considering subjects' diagnoses. Patients and Methods: A total of 19,578 PSGs from 13 open-access databases were used to train U-Sleep, a state-of-the-art sleep-scoring algorithm. We leveraged a comprehensive clinical database of an additional 8832 PSGs, covering a full spectrum of ages (0-91 years) and sleep-disorders, to refine the U-Sleep, and to evaluate different uncertainty-quantification approaches, including our novel confidence network. The ID data consisted of PSGs scored by over 50 physicians, and the two OOD sets comprised recordings each scored by a unique senior physician. Results: U-Sleep demonstrated robust performance, with Cohen's kappa (K) at 76.2% on ID and 73.8-78.8% on OOD data. The confidence network excelled at identifying uncertain predictions, achieving AUROC scores of 85.7% on ID and 82.5-85.6% on OOD data. Independently of sleep-disorder status, statistical evaluations revealed significant differences in confidence scores between aligning vs discording predictions, and significant correlations of confidence scores with classification performance metrics. To achieve κ ≥ 90% with physician intervention, examining less than 29.0% of uncertain epochs was required, substantially reducing physicians' workload, and facilitating near-perfect agreement. Conclusion: Inter-scorer variability limits the accuracy of the scoring algorithms to ~80%. By integrating an uncertainty estimation with U-Sleep, we enhance the review of predicted hypnograms, to align with the scoring taste of a responsible physician. Validated across ID and OOD data and various sleep-disorders, our approach offers a strategy to boost automated scoring tools' usability in clinical settings.

2.
Comput Biol Med ; 167: 107655, 2023 12.
Article in English | MEDLINE | ID: mdl-37976830

ABSTRACT

Large high-quality datasets are essential for building powerful artificial intelligence (AI) algorithms capable of supporting advancement in cardiac clinical research. However, researchers working with electrocardiogram (ECG) signals struggle to get access and/or to build one. The aim of the present work is to shed light on a potential solution to address the lack of large and easily accessible ECG datasets. Firstly, the main causes of such a lack are identified and examined. Afterward, the potentials and limitations of cardiac data generation via deep generative models (DGMs) are deeply analyzed. These very promising algorithms have been found capable not only of generating large quantities of ECG signals but also of supporting data anonymization processes, to simplify data sharing while respecting patients' privacy. Their application could help research progress and cooperation in the name of open science. However several aspects, such as a standardized synthetic data quality evaluation and algorithm stability, need to be further explored.


Subject(s)
Artificial Intelligence , Electrocardiography , Humans , Heart , Algorithms , Data Accuracy
3.
NPJ Digit Med ; 6(1): 33, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36878957

ABSTRACT

AASM guidelines are the result of decades of efforts aiming at standardizing sleep scoring procedure, with the final goal of sharing a worldwide common methodology. The guidelines cover several aspects from the technical/digital specifications, e.g., recommended EEG derivations, to detailed sleep scoring rules accordingly to age. Automated sleep scoring systems have always largely exploited the standards as fundamental guidelines. In this context, deep learning has demonstrated better performance compared to classical machine learning. Our present work shows that a deep learning-based sleep scoring algorithm may not need to fully exploit the clinical knowledge or to strictly adhere to the AASM guidelines. Specifically, we demonstrate that U-Sleep, a state-of-the-art sleep scoring algorithm, can be strong enough to solve the scoring task even using clinically non-recommended or non-conventional derivations, and with no need to exploit information about the chronological age of the subjects. We finally strengthen a well-known finding that using data from multiple data centers always results in a better performing model compared with training on a single cohort. Indeed, we show that this latter statement is still valid even by increasing the size and the heterogeneity of the single data cohort. In all our experiments we used 28528 polysomnography studies from 13 different clinical studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...