Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 31(23): 235703, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30822754

ABSTRACT

We report on a deep level transient spectroscopy study of annealing kinetics of a deep, vacancy-hydrogen related level, labeled E5*, at 0.42 eV below the conduction band in hydrogen-implanted n-type silicon. The E5* annealing correlates with the formation of another commonly observed vacancy-hydrogen related level, labeled E5, at 0.45 eV below the conduction band. The annealing of E5* and the formation of E5 exhibit first-order kinetics with an activation energy of 1.61 ± 0.07 eV and a pre-factor of ~1013-1014 s-1. The pre-factor indicates a dissociation or structural transformation mechanism. The analysis of electron capture cross-sections for E5* and E5 reveals considerable transition entropies for both states and a temperature dependent capture cross-section for E5*. Two possible identifications of E5* and E5 are put forward. Firstly, E5* can be attributed to V 2H2(-/0) or V 2H3(-/0), which dissociate with the emission of VH (E5). Secondly, E5* and E5 can be assigned to two different configurations of V 3H.

2.
Nanotechnology ; 30(13): 135601, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30602142

ABSTRACT

Nanoporous and nanowire structures based on silicon (Si) have a well recognized potential in a number of applications such as photovoltaics, energy storage and thermoelectricity. The immiscibility of Si and aluminum (Al) may be utilized to produce a thin film of vertically aligned Al nanowires of 5 nm diameter within an amorphous silicon matrix (a-Si), providing a cheap and scalable fabrication method for sub 5 nm size Si nanostructures. In this work we study functionalization of these structures by removal of the Al nanowires. The nanowires have been etched by an aqueous solution of HCl, which results in a structure of vertically aligned nanochannels in a-Si with admixture of SiO x . The removal of Al nanowires has been monitored by several electron microscopy techniques, x-ray diffraction, Rutherford backscattering spectroscopy, and optical reflectance. We have established that optical reflectance measurements can reliably identify the complete removal of Al, confirmed by other techniques. This provides a robust and relatively simple method for controlling the nano-fabrication process on a macroscopic scale.

3.
Sci Rep ; 7(1): 17065, 2017 12 06.
Article in English | MEDLINE | ID: mdl-29213050

ABSTRACT

Uniaxial-stress experiments have been performed for the 3287- and 2445-cm-1 local vibrational modes assigned to the positive charge state of interstitial hydrogen [Formula: see text] and deuterium [Formula: see text], respectively, occurring in mono-crystalline rutile TiO2. The onset of the defect alignment under the stress applied perpendicular to the [001] axis is detected at 165 K (185 K), which corresponds to the activation energy of 0.53 eV (0.58 eV) for interstitial hydrogen (deuterium). Based on these findings the diffusion constants of [Formula: see text] and [Formula: see text] along the [001] axis of TiO2 are determined. The experimental data are complemented by density-functional theory calculations and compared with the earlier results on the diffusion of [Formula: see text]/[Formula: see text] at elevated temperatures up to 700 °C. It is found that the activation energy value deduced from our low-temperature stress measurements yields a very good agreement with the high-temperature data, covering a dynamic range of 12 orders of magnitude.

4.
J Phys Condens Matter ; 29(43): 435002, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28829336

ABSTRACT

The interface between ZnO and Cu2O has been predicted to be a good candidate for use in thin film solar cells. However, the high predicted conversion efficiency has yet to be fully realized experimentally. To explore the underlying causes of this we investigate the interface between ZnO and Cu2O in magnetron sputtered samples. Two different sample geometries were made: In the first set thin layers of ZnO were deposited on Cu2O (type A), while in the second set the order was reversed (type B). Using x-ray photoelectron spectroscopy (XPS), an intermediate CuO layer was identified regardless of the order in which the Cu2O and ZnO layers were deposited. The presence of a CuO layer was supported by transmission electron microscopy (TEM) results. Changes in the electron hole screening conditions were observed in CuO near the interface with ZnO, manifested as changes in the relative peak-to-satellite ratio and the degree of asymmetric broadness in the Cu 2p peak. The suppression of the Cu 2p satellite characteristic of CuO may cause the CuO presence to be overlooked and cause errors in determinations of valence band offsets (VBOs). For the type A samples, we compare four different approaches to XPS-based determination of VBO and find that the most reliable results are obtained when the thin CuO layer and the altered screening conditions at the interface were taken into account. The VBOs were found to range between 2.5 eV and 2.8 eV. For the B type samples a reduction of the Cu 2p-LMM Auger parameter was found as compared to bulk Cu2O, indicative of quantum confinement in the Cu2O overlayer.

5.
J Phys Condens Matter ; 29(31): 315701, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28589923

ABSTRACT

Silicon-based tandem heterojunction solar cells utilizing cuprous oxide (Cu2O) as the top absorber layer show promise for high-efficiency conversion and low production cost. In the present study, single phase Cu2O films have been realized on n-type Si substrates by reactive magnetron sputtering at 400 °C. The obtained Cu2O/Si heterostructures have subsequently been heat treated at temperatures in the 400-700 °C range in Ar flow and extensively characterized by x-ray diffraction (XRD) measurements, transmission electron microscopy (TEM) imaging and electrical techniques. The Cu2O/Si heterojunction exhibits a current rectification of ~5 orders of magnitude between forward and reverse bias voltages. High resolution cross-sectional TEM-images show the presence of a ~2 nm thick interfacial SiO2 layer between Cu2O and the Si substrate. Heat treatments below 550 °C result in gradual improvement of crystallinity, indicated by XRD. At and above 550 °C, partial phase transition to cupric oxide (CuO) occurs followed by a complete transition at 700 °C. No increase or decrease of the SiO2 layer is observed after the heat treatment at 550 °C. Finally, a thin Cu-silicide layer (Cu3Si) emerges below the SiO2 layer upon annealing at 550 °C. This silicide layer influences the lateral current and voltage distributions, as evidenced by an increasing effective area of the heterojunction diodes.

6.
Phys Med ; 32(12): 1795-1800, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27890569

ABSTRACT

We present here the latest results from tests performed at the ESRF ID17 and ID21 beamlines for the characterization of novel beam monitors for Microbeam Radiation Therapy (MRT), which is currently being implemented at ID17. MRT aims at treating solid tumors by exploiting an array of evenly spaced microbeams, having an energy spectrum distributed between 27 and 600keV and peaking at 100keV. Given the high instantaneous dose delivered (up to 20kGy/s), the position and the intensity of the microbeams has to be precisely and instantly monitored. For this purpose, we developed dedicated silicon microstrip beam monitors. We have successfully characterized them, both with a microbeam array at ID17, and a submicron scanning beam at ID21. We present here the latest results obtained in recent tests along with an outlook on future developments.


Subject(s)
Microtechnology/instrumentation , Radiotherapy/instrumentation , Silicon , Equipment Design , Radiotherapy Dosage
7.
J Phys Condens Matter ; 24(43): 435801, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-23032721

ABSTRACT

The formation of the divacancy-oxygen centre (V(2)O) in p-type Czochralski-grown silicon has been investigated by means of deep level transient spectroscopy (DLTS). The donor state (+/0) of V(2)O is located at ~E(v) + 0.23 eV (E(v) denotes the valence band edge) and emerges during heat treatment above 200 °C at the expense of the divacancy centre (V(2)). A concurrent transition takes place between the single-acceptor states of V(2) and V(2)O, as unveiled by the injection of electrons through optical excitation during the trap filling sequence of the DLTS measurements. Further, a defect with an energy level at ~E(v) + 0.09 eV evolves in close correlation with the growth of V(2)O but at a factor of ~5-6 lower in concentration. In the literature, the E(v) + 0.09 eV level has previously been attributed to a double-donor state of V(2)O but this assignment can be ruled out by the present data favouring a complex formed between migrating V(2) centres and a competing interstitial oxygen trap. In addition, a level at ~E(v) + 0.24 eV occurs also during the heat treatment above 200 °C and is tentatively assigned to the trivacancy-oxygen centre (V(3)O).

SELECTION OF CITATIONS
SEARCH DETAIL
...