Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 12443, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34127766

ABSTRACT

Conductive rutile TiO2 has received considerable attention recently due to multiple applications. However, the permittivity in conductive, reduced or doped TiO2 appears to cause controversy with reported values in the range 100-10,000. In this work, we propose a method for measurements of the permittivity in conductive, n-type TiO2 that involves: (i) hydrogen ion-implantation to form a donor concentration peak at a known depth, and (ii) capacitance-voltage measurements for donor profiling. We cannot confirm the claims stating an extremely high permittivity of single crystalline TiO2. On the contrary, the permittivity of conductive, reduced single crystalline TiO2 is similar to that of insulating TiO2 established previously, with a Curie-Weiss type temperature dependence and the values in the range 160-240 along with the c-axis.

2.
Nanomaterials (Basel) ; 9(8)2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31375018

ABSTRACT

We present a study of the surface effects and optical properties of the self-assembled nanostructures comprised of vertically aligned 5 nm-diameter Al nanowires embedded in an amorphous Si matrix (a-Si:Al). The controlled (partial) removal of Al nanowires in a selective etching process yielded nanoporous a-Si media with a variable effective surface area. Different spectroscopy techniques, such as X-ray photoelectron spectroscopy (XPS), UV-Vis spectrophotometry and photoluminescence (PL), have been combined to investigate the impact of such nanostructuring on optical absorption and emission properties. We also examine long-term exposure to air ambient and show that increasing level of surface oxidation determines the oxide defect-related nature of the dominant PL emission from the nanoporous structures. The role of bulk, nanosize and surface effects in optical properties has been separated and quantified, providing a better understanding of the potential of such nanoporous a-Si:Al structures for future device developments.

SELECTION OF CITATIONS
SEARCH DETAIL
...