Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Elife ; 122024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922679

ABSTRACT

During tuberculosis (TB), migration of dendritic cells (DCs) from the site of infection to the draining lymph nodes is known to be impaired, hindering the rapid development of protective T-cell-mediated immunity. However, the mechanisms involved in the delayed migration of DCs during TB are still poorly defined. Here, we found that infection of DCs with Mycobacterium tuberculosis (Mtb) triggers HIF1A-mediated aerobic glycolysis in a TLR2-dependent manner, and that this metabolic profile is essential for DC migration. In particular, the lactate dehydrogenase inhibitor oxamate and the HIF1A inhibitor PX-478 abrogated Mtb-induced DC migration in vitro to the lymphoid tissue-specific chemokine CCL21, and in vivo to lymph nodes in mice. Strikingly, we found that although monocytes from TB patients are inherently biased toward glycolysis metabolism, they differentiate into poorly glycolytic and poorly migratory DCs compared with healthy subjects. Taken together, these data suggest that because of their preexisting glycolytic state, circulating monocytes from TB patients are refractory to differentiation into migratory DCs, which may explain the delayed migration of these cells during the disease and opens avenues for host-directed therapies for TB.


Subject(s)
Cell Movement , Dendritic Cells , Glycolysis , Hypoxia-Inducible Factor 1, alpha Subunit , Monocytes , Mycobacterium tuberculosis , Tuberculosis , Dendritic Cells/metabolism , Dendritic Cells/immunology , Monocytes/metabolism , Monocytes/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mycobacterium tuberculosis/immunology , Animals , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Mice , Toll-Like Receptor 2/metabolism , Mice, Inbred C57BL , Female
2.
J Leukoc Biol ; 112(5): 1329-1342, 2022 11.
Article in English | MEDLINE | ID: mdl-35588259

ABSTRACT

While tuberculosis (TB) is a risk factor in HIV-1-infected individuals, the mechanisms by which Mycobacterium tuberculosis (Mtb), the agent of TB in humans, worsens HIV-1 pathogenesis still need to be fully elucidated. Recently, we showed that HIV-1 infection and spread are exacerbated in macrophages exposed to TB-associated microenvironments. Transcriptomic analysis of macrophages conditioned with medium of Mtb-infected human macrophages (cmMTB) revealed an up-regulation of the typeI interferon (IFN-I) pathway, characterized by the overexpression of IFN-inducible genes. Historically, IFN-I are well known for their antiviral functions, but our previous work showed that this is not the case in the context of coinfection with HIV-1. Here, we show that the IFN-I response signature in cmMTB-treated macrophages matches the one observed in the blood of active TB patients, and depends on the timing of incubation with cmMTB. This suggests that the timing of macrophage's exposure to IFN-I can impact their capacity to control HIV-1 infection. Strikingly, we found that cmMTB-treated macrophages are hyporesponsive to extrastimulation with exogenous IFN-I, used to mimic HIV-1 infection. Yet, depleting STAT1 by gene silencing to block the IFN-I signaling pathway reduced TB-induced exacerbation of HIV-1 infection. Altogether, by aiming to understand why TB-derived IFN-I preexposure of macrophages did not induce antiviral immunity against HIV-1, we demonstrated that these cells are hyporesponsive to exogenous IFN-I, a phenomenon that prevents macrophage activation against HIV-1.


Mycobacterium tuberculosis induces hyporesponsiveness of the IFN-I signaling pathway in macrophages, leading to the exacerbation of HIV-1 replication.


Subject(s)
Coinfection , HIV Infections , Interferon Type I , Macrophages , Mycobacterium tuberculosis , Tuberculosis , Humans , HIV-1 , Macrophages/metabolism , Macrophages/virology , Signal Transduction , Tuberculosis/metabolism , Interferon Type I/metabolism
3.
J Immunol ; 207(7): 1857-1870, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34479945

ABSTRACT

The lungs harbor multiple resident microbial communities, otherwise known as the microbiota. There is an emerging interest in deciphering whether the pulmonary microbiota modulate local immunity, and whether this knowledge could shed light on mechanisms operating in the response to respiratory pathogens. In this study, we investigate the capacity of a pulmonary Lactobacillus strain to modulate the lung T cell compartment and assess its prophylactic potential upon infection with Mycobacterium tuberculosis, the etiological agent of tuberculosis. In naive mice, we report that a Lactobacillus murinus (Lagilactobacillus murinus) strain (CNCM I-5314) increases the presence of lung Th17 cells and of a regulatory T cell (Treg) subset known as RORγt+ Tregs. In particular, intranasal but not intragastric administration of CNCM I-5314 increases the expansion of these lung leukocytes, suggesting a local rather than systemic effect. Resident Th17 and RORγt+ Tregs display an immunosuppressive phenotype that is accentuated by CNCM I-5314. Despite the well-known ability of M. tuberculosis to modulate lung immunity, the immunomodulatory effect by CNCM I-5314 is dominant, as Th17 and RORγt+ Tregs are still highly increased in the lung at 42-d postinfection. Importantly, CNCM I-5314 administration in M. tuberculosis-infected mice results in reduction of pulmonary inflammation, without increasing M. tuberculosis burden. Collectively, our findings provide evidence for an immunomodulatory capacity of CNCM I-5314 at steady state and in a model of chronic inflammation in which it can display a protective role, suggesting that L. murinus strains found in the lung may shape local T cells in mice and, perhaps, in humans.


Subject(s)
Lactobacillus/physiology , Lung/immunology , Mycobacterium tuberculosis/physiology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Tuberculosis, Pulmonary/immunology , Animals , Cells, Cultured , Disease Models, Animal , Humans , Lung/microbiology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Pneumonia
4.
Med Sci (Paris) ; 37(4): 342-348, 2021 Apr.
Article in French | MEDLINE | ID: mdl-33908851

ABSTRACT

Metabolism and immunity have long been classified in distinct research fields; however, the concept of immunometabolism has recently highlighted their close relationship. Immune cells in an infectious context undergo a metabolic reprogramming that leads to the accumulation of metabolites. Some of these metabolites, called metabokines, play a crucial role in anti-infectious immunity by having immunoregulatory and antimicrobial defence properties. On the one hand, metabokines regulate the response of host immune cells by modulating intracellular signalling and/or inducing post-translational modifications of proteins. On the other hand, metabokines can directly or indirectly target pathogens by inhibiting microbial metabolic pathways, restoring the sensitivity of bacteria to antibiotics, and disrupting viral replication cycles. These discoveries on metabokine properties could pave the way for the development of innovative anti-infectious metabolic treatments.


TITLE: Les métabokines, des médiateurs essentiels de l'immunité anti-infectieuse. ABSTRACT: Longtemps cloisonnés dans des domaines de recherche distincts, métabolisme énergétique et immunité ont un lien étroit, récemment mis en exergue par le concept d'immunométabolisme. Dans un contexte infectieux, des reprogrammations métaboliques peuvent en effet survenir dans les cellules immunitaires et aboutir à l'accumulation de divers métabolites, dont certains, appelés métabokines, possèdent des propriétés inattendues d'immunorégulation et de défense antimicrobienne. Ils jouent un rôle crucial dans l'immunité anti-infectieuse, en régulant la réponse des cellules immunitaires de l'hôte, mais aussi en ciblant directement ou indirectement les microorganismes pathogènes.


Subject(s)
Cellular Reprogramming/immunology , Cytokines/immunology , Immunity, Cellular , Infections/immunology , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Energy Metabolism , Epigenesis, Genetic , Humans , Infections/metabolism , Macrophages/cytology , Macrophages/immunology , Metabolic Networks and Pathways , Virus Replication/immunology
5.
J Virol ; 95(3)2021 01 13.
Article in English | MEDLINE | ID: mdl-33208442

ABSTRACT

Hepatitis C virus (HCV) infection triggers Golgi fragmentation through the Golgi-resident protein immunity-related GTPase M (IRGM). Here, we report the roles of NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) and ASC (apoptosis-associated speck-like protein containing a caspase activation and recruitment domain [CARD]), two inflammasome components, in the initial events leading to this fragmentation. We show that ASC resides at the Golgi with IRGM at homeostasis. Upon infection, ASC dissociates from both IRGM and the Golgi and associates with HCV-induced NLRP3. NLRP3 silencing inhibits Golgi fragmentation. ASC silencing disrupts the Golgi structure in both control and infected cells and reduces the localization of IRGM at the Golgi. IRGM depletion in the ASC-silenced cells cannot totally restore the Golgi structure. These data highlight a role for ASC, upstream of the formation of the inflammasome, in regulating IRGM through its control on the Golgi. A similar mechanism occurs in response to nigericin treatment, but not in cells infected with another member of the Flaviviridae family, Zika virus (ZIKV). We propose a model for a newly ascribed function of the inflammasome components in Golgi structural remodeling during certain stimuli.IMPORTANCE Numerous pathogens can affect cellular homeostasis and organelle dynamics. Hepatitis C virus (HCV) triggers Golgi fragmentation through the immunity-related GTPase M (IRGM), a resident Golgi protein, to enhance its lipid supply for replication. Here, we reveal the role of the inflammasome components NLRP3 and ASC in this process, thus uncovering a new interplay between effectors of inflammation and viral infection or stress. We show that the inflammasome component ASC resides at the Golgi under homeostasis and associates with IRGM. Upon HCV infection, ASC is recruited to NLRP3 and dissociates from IRGM, causing Golgi fragmentation. Our results uncover that aside from their known function in the inflammation response, these host defense regulators also ensure the maintenance of intact intracellular structure in homeostasis, while their activation relieves factors leading to Golgi remodeling.


Subject(s)
CARD Signaling Adaptor Proteins/metabolism , GTP-Binding Proteins/metabolism , Golgi Apparatus/physiology , Hepacivirus/isolation & purification , Hepatitis C/virology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apoptosis , CARD Signaling Adaptor Proteins/genetics , GTP-Binding Proteins/genetics , Golgi Apparatus/virology , Hepatitis C/metabolism , Hepatitis C/pathology , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/genetics
6.
Immunol Cell Biol ; 98(7): 577-594, 2020 08.
Article in English | MEDLINE | ID: mdl-32333812

ABSTRACT

Staphylococcus aureus is found in the nasal cavity of up to 30% of the human population. Persistent nasal carriage of S. aureus is a risk factor for influenza virus-induced secondary bacterial pneumonia. There is limited understanding of the factors that cause S. aureus to shift from the upper to the lower respiratory tract and convert from a commensal organism to an invasive pathogen. Here we show that neutrophils actively prevent S. aureus dissemination. Establishment of a mouse model of localized S. aureus nasal carriage revealed variations in the longevity of persistence of S. aureus isolates. Improved persistence within this site was associated with reduced nasal inflammation, less neutrophil egress into the airways and reduced neutrophil-bacteria association. Neutrophil depletion of mice with localized S. aureus nasal carriage triggered the development of an invasive S. aureus infection. Moreover, utilizing a model of influenza-induced staphylococcal pneumonia we showed that treatment with granulocyte-colony-stimulating factor, a potent enhancer of neutrophil number and function, significantly reduced bacterial loads in the lung and improved disease outcomes. These data reveal that neutrophils play an important and active role in confining S. aureus to the upper respiratory tract and highlight the use of approaches that improve neutrophil function as effective strategies to attenuate morbidity associated with staphylococcal pneumonia.


Subject(s)
Lung/microbiology , Neutrophils/immunology , Pneumonia, Staphylococcal/immunology , Animals , Mice , Nose/microbiology , Orthomyxoviridae Infections , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...