Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Diabetes Endocrinol ; 3(12): 939-47, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26432775

ABSTRACT

BACKGROUND: An artificial pancreas (AP) that can be worn at home from dinner to waking up in the morning might be safe and efficient for first routine use in patients with type 1 diabetes. We assessed the effect on glucose control with use of an AP during the evening and night plus patient-managed sensor-augmented pump therapy (SAP) during the day, versus 24 h use of patient-managed SAP only, in free-living conditions. METHODS: In a crossover study done in medical centres in France, Italy, and the Netherlands, patients aged 18-69 years with type 1 diabetes who used insulin pumps for continuous subcutaneous insulin infusion were randomly assigned to 2 months of AP use from dinner to waking up plus SAP use during the day versus 2 months of SAP use only under free-living conditions. Randomisation was achieved with a computer-generated allocation sequence with random block sizes of two, four, or six, masked to the investigator. Patients and investigators were not masked to the type of intervention. The AP consisted of a continuous glucose monitor (CGM) and insulin pump connected to a modified smartphone with a model predictive control algorithm. The primary endpoint was the percentage of time spent in the target glucose concentration range (3·9-10·0 mmol/L) from 2000 to 0800 h. CGM data for weeks 3-8 of the interventions were analysed on a modified intention-to-treat basis including patients who completed at least 6 weeks of each intervention period. The 2 month study period also allowed us to asses HbA1c as one of the secondary outcomes. This trial is registered with ClinicalTrials.gov, number NCT02153190. FINDINGS: During 2000-0800 h, the mean time spent in the target range was higher with AP than with SAP use: 66·7% versus 58·1% (paired difference 8·6% [95% CI 5·8 to 11·4], p<0·0001), through a reduction in both mean time spent in hyperglycaemia (glucose concentration >10·0 mmol/L; 31·6% vs 38·5%; -6·9% [-9·8% to -3·9], p<0·0001) and in hypoglycaemia (glucose concentration <3·9 mmol/L; 1·7% vs 3·0%; -1·6% [-2·3 to -1·0], p<0·0001). Decrease in mean HbA1c during the AP period was significantly greater than during the control period (-0·3% vs -0·2%; paired difference -0·2 [95% CI -0·4 to -0·0], p=0·047), taking a period effect into account (p=0·0034). No serious adverse events occurred during this study, and none of the mild-to-moderate adverse events was related to the study intervention. INTERPRETATION: Our results support the use of AP at home as a safe and beneficial option for patients with type 1 diabetes. The HbA1c results are encouraging but preliminary. FUNDING: European Commission.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Hyperglycemia/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Pancreas, Artificial , Adolescent , Adult , Aged , Blood Glucose/metabolism , Blood Glucose Self-Monitoring , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Female , Humans , Insulin Infusion Systems , Male , Middle Aged , Monitoring, Physiologic , Smartphone , Time Factors , Treatment Outcome , Young Adult
2.
Diabetes Technol Ther ; 17(3): 203-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25594434

ABSTRACT

BACKGROUND: Studies of closed-loop control (CLC) systems have improved glucose levels in patients with type 1 diabetes. In this study we test a new CLC concept aiming to "reset" the patient overnight to near-normoglycemia each morning, for several consecutive nights. SUBJECTS AND METHODS: Ten insulin pump users with type 1 diabetes (mean age, 46.4±8.5 years) were enrolled in a two-center (in the United States and Italy) randomized crossover trial comparing 5 consecutive nights of CLC (23:00-07:00 h) in an outpatient setting versus sensor-augmented insulin pump therapy of the same duration at home. Primary end points included time spent in 80-140 mg/dL as measured by continuous glucose monitoring overnight and fasting blood glucose distribution at 7:00 h. RESULTS: Compared with sensor-augmented pump therapy, CLC improved significantly time spent between 80 and 140 mg/dL (54.5% vs. 32.2%; P<0.001) and between 70 and 180 mg/dL (85.4% vs. 59.1%; P<0.001); CLC reduced the mean glucose level at 07:00 h (119.3 vs. 152.9 mg/dL; P<0.001) and overnight mean glucose level (139.0 vs. 170.3 mg/dL; P<0.001) using a marginally lower amount of insulin (6.1 vs. 6.8 units; P=0.1). Tighter overnight control led to improved daytime control on the next day: the overnight/next-day control correlation was r=0.52, P<0.01. CONCLUSIONS: Multinight CLC of insulin delivery (artificial pancreas) results in significant improvement in morning and overnight glucose levels and time in target range, with the potential to improve daytime control when glucose levels were "reset" to near-normoglycemia each morning.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Drug Chronotherapy , Hypoglycemic Agents/administration & dosage , Insulin Infusion Systems , Insulin/administration & dosage , Adult , Blood Glucose/metabolism , Blood Glucose Self-Monitoring/methods , Blood Glucose Self-Monitoring/statistics & numerical data , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Fasting/blood , Female , Humans , Italy , Male , Middle Aged , Time Factors , Treatment Outcome , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...