Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 2080, 2018.
Article in English | MEDLINE | ID: mdl-30233548

ABSTRACT

Morbidity and mortality attributed to Clostridium difficile infection (CDI) have increased over the past 20 years. Currently, antibiotics are the only US FDA-approved treatment for primary C. difficile infection, and these are, ironically, associated with disease relapse and the threat of burgeoning drug resistance. We previously showed that non-toxin virulence factors play key roles in CDI, and that colonization factors are critical for disease. Specifically, a C. difficile adhesin, Surface Layer Protein A (SlpA) is a major contributor to host cell attachment. In this work, we engineered Syn-LAB 2.0 and Syn-LAB 2.1, two synthetic biologic agents derived from lactic acid bacteria, to stably and constitutively express a host-cell binding fragment of the C. difficile adhesin SlpA on their cell-surface. Both agents harbor conditional suicide plasmids expressing a codon-optimized chimera of the lactic acid bacterium's cell-wall anchoring surface-protein domain, fused to the conserved, highly adherent, host-cell-binding domain of C. difficile SlpA. Both agents also incorporate engineered biocontrol, obviating the need for any antibiotic selection. Syn-LAB 2.0 and Syn-LAB 2.1 possess positive biophysical and in vivo properties compared with their parental antecedents in that they robustly and constitutively display the SlpA chimera on their cell surface, potentiate human intestinal epithelial barrier function in vitro, are safe, tolerable and palatable to Golden Syrian hamsters and neonatal piglets at high daily doses, and are detectable in animal feces within 24 h of dosing, confirming robust colonization. In combination, the engineered strains also delay (in fixed doses) or prevent (when continuously administered) death of infected hamsters upon challenge with high doses of virulent C. difficile. Finally, fixed-dose Syn-LAB ameliorates diarrhea in a non-lethal model of neonatal piglet enteritis. Taken together, our findings suggest that the two synthetic biologics may be effectively employed as non-antibiotic interventions for CDI.

2.
Cell Mol Gastroenterol Hepatol ; 6(2): 163-180, 2018.
Article in English | MEDLINE | ID: mdl-30003123

ABSTRACT

BACKGROUND & AIMS: The diarrheagenic pathogen, enteropathogenic Escherichia coli (EPEC), uses a type III secretion system to deliver effector molecules into intestinal epithelial cells (IECs). While exploring the basis for the lateral membrane separation of EPEC-infected IECs, we observed infection-induced loss of the desmosomal cadherin desmoglein-2 (DSG2). We sought to identify the molecule(s) involved in, and delineate the mechanisms and consequences of, EPEC-induced DSG2 loss. METHODS: DSG2 abundance and localization was monitored via immunoblotting and immunofluorescence, respectively. Junctional perturbations were visualized by electron microscopy, and cell-cell adhesion was assessed using dispase assays. EspH alanine-scan mutants as well as pharmacologic agents were used to evaluate impacts on desmosomal alterations. EPEC-mediated DSG2 loss, and its impact on bacterial colonization in vivo, was assessed using a murine model. RESULTS: The secreted virulence protein EspH mediates EPEC-induced DSG2 degradation, and contributes to desmosomal perturbation, loss of cell junction integrity, and barrier disruption in infected IECs. EspH sequesters Rho guanine nucleotide exchange factors and inhibits Rho guanosine triphosphatase signaling; EspH mutants impaired for Rho guanine nucleotide exchange factor interaction failed to inhibit RhoA or deplete DSG2. Cytotoxic necrotizing factor 1, which locks Rho guanosine triphosphatase in the active state, jasplakinolide, a molecule that promotes actin polymerization, and the lysosomal inhibitor bafilomycin A, respectively, rescued infected cells from EPEC-induced DSG2 loss. Wild-type EPEC, but not an espH-deficient strain, colonizes mouse intestines robustly, widens paracellular junctions, and induces DSG2 re-localization in vivo. CONCLUSIONS: Our studies define the mechanism and consequences of EPEC-induced desmosomal alterations in IECs. These perturbations contribute to the colonization and virulence of EPEC, and likely related pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...