Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37109930

ABSTRACT

Construction and demolition waste (CDW) currently constitutes a waste stream with growing potential use as a secondary raw material in the manufacture of eco-cements that offer smaller carbon footprints and less clinker content than conventional cements. This study analyzes the physical and mechanical properties of two different cement types, ordinary Portland cement (OPC) and calcium sulfoaluminate (CSA) cement, and the synergy between them. These cements are manufactured with different types of CDW (fine fractions of concrete, glass and gypsum) and are intended for new technological applications in the construction sector. This paper addresses the chemical, physical, and mineralogical characterization of the starting materials, as well as the physical (water demand, setting time, soundness, water absorption by capillary action, heat of hydration, and microporosity) and mechanical behavior of the 11 cements selected, including the two reference cements (OPC and commercial CSA). From the analyses obtained, it should be noted that the addition of CDW to the cement matrix does not modify the amount of water by capillarity with respect to OPC cement, except for Labo CSA cement which increases by 15.7%, the calorimetric behavior of the mortars is different depending on the type of ternary and hybrid cement, and the mechanical resistance of the analysed mortars decreases. The results obtained show the favorable behavior of the ternary and hybrid cements made with this CDW. Despite the variations observed in the different types of cement, they all comply with the current standards applicable to commercial cements and open up a new opportunity to improve sustainability in the construction sector.

2.
Materials (Basel) ; 14(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800479

ABSTRACT

This work analyses the influence of fine concrete fractions (<5 mm) of different natures -calcareous (HcG) and siliceous (HsT)-obtained from construction and demolition waste (C&DW) on the behaviour of blended cement pastes with partial replacements between 5 and 10%. The two C&DW fractions were characterised by different instrumental techniques. Subsequently, their lime-fixing capacity and the physico-mechanical properties of the blended cement pastes were analysed. Lastly, the environmental benefits of reusing these fine wastes in the manufacture of future eco-efficient cement pastes were examined. The results show that HsT and HcG exhibit weak pozzolanic activity, owing to their low reactive silica and alumina content. Despite this, the new cement pastes meet the physical and mechanical requirements of the existing regulations for common cements. It should be highlighted that the blended cement pastes initially showed a coarser pore network, but then they underwent a refinement process between 2 and 28 days, along with a gain in compressive strength, possibly due to the double pozzolanic and filler effect of the wastes. The environmental viability of the blended cements was evaluated in a Life Cycle Assessment (LCA) concluding that the overall environmental impact could be reduced in the same proportion of the replacement rate. This is in line with the Circular Economy goals and the 2030 Agenda for Sustainable Development.

3.
Waste Manag ; 126: 747-753, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33910069

ABSTRACT

The safe disposal of municipal solid waste incineration fly ash (MSWIFA) has become the weakest link of the circular economy of MSW due to its hazardous nature. In this study, we focused on the heavy metals solidification of MSWIFA by using alkali-activation technology and introducing a mold-pressing method. The influence of alkaline activator (AA) including alkali concentration and dosage of sodium silicate solution were well designed and studied. MSWIFA before and after alkali-activation, as well as the sample treated by commercial chelating agent (CA), were contrastively studied the performance of heavy metals solidification. The results show that the alkali-activated MSWIFA exhibits superior solidification for heavy metals than the blank control and the CA treated ones. With mold-pressing technology, the alkali-activated MSWIFA shows a core-shell structure, in which a thin layer that is composed of mainly N-A-S-H gel is as the shell and acts as a protective layer to inhibit the leaching of heavy metals. Besides, the introduced mold-pressing technology is beneficial for the improvement of materials strength and the reduction of AA dosage. The optimal AA composition is that the net concentration of NaOH is ∼4 M and sodium silicate dosage is ∼65 wt% in alkaline activator, and the total alkaline activator requirement is only 32 wt% of MSWIFA, yielding 7.9 MPa compressive strength at 10.2 MPa molding pressure. In summary, this work paves a potential new way for safe and recycling use of hazardous MSWIFA, which will be of great significance to environmental sustainability.


Subject(s)
Metals, Heavy , Refuse Disposal , Alkalies , Carbon , Coal Ash , Incineration , Metals, Heavy/analysis , Particulate Matter , Solid Waste/analysis
4.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33466793

ABSTRACT

Tricalcium aluminate (C3A) is the most reactive component of the Portland cement and its hydration has an important impact on the workability and early strength of concrete. Recently, nanomaterials such as nano-silica (nano-SiO2) have attracted much attention in cement-based materials because of its pozzolanic reactivity and the pore-filling effect. However, its influence on the hydration of C3A needs to be well understood. In this study, the hydration kinetics of C3A mixed with different percentages of nano-SiO2 were studied and compared with pure C3A. The hydration products were examined by different characterization techniques including XRD, XPS, and NMR spectroscopy and isothermal calorimetry analyses. The XRD results showed that the addition of nano-SiO2 promoted the conversion of the intermediate product C4AH13. The isothermal calorimetry results showed that the addition of nano-SiO2 significantly reduced the hydration exotherm rate of C3A from 0.34 to less than 0.1 mW/g. With the presence of nano-SiO2, the peaks for Q1 were observed in 29Si MAS-NMR measurements, and the content of Q1 increased from 6.74% to 30.6% when the nano-SiO2 content increased from 2 wt.% to 8 wt.%, whereas the proportion of Q4 gradually decreased from 89.1% to 63.6%. These results indicated a pozzolanic reaction provoked by the nano-SiO2 combined with aluminate structures generating C-A-S-H gel.

5.
Nanomaterials (Basel) ; 7(9)2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28878154

ABSTRACT

Dispersion of carbon nanotubes (CNTs) is a challenge for their application in the resulting matrixes. The present study conducted a comparison investigation of the effect of four surfactants: Alkylphenol polyoxyethylene ether (APEO), Silane modified polycarboxylate (Silane-PCE), I-Cationic polycarboxylate (I-C-PCE), and II-Cationic polycarboxylate (II-C-PCE) on the dispersion of hydroxyl functionalized multi-walled carbon nanotubes (MWCNTs-OH). Among the four surfactants, APEO and II-C-PCE provide the best and the worst dispersion effect of CNTs in water, respectively. Dispersion effect of MWCNTs-OH has been characterized by optical microscope (OM), field emission-scanning electron microscope (FE-SEM), and Ultraviolet-visible spectroscopy (UV-Vis).The OM images are well consistent with the UV-Vis results. Based on the chemical molecular structures of the four surfactants, the mechanism of MWCNTs-OH dispersion in water was investigated. For each kind of surfactant, an optimum surfactant/MWCNTs-OH ratio has been determined. This ratio showed a significant influence on the dispersion of MWCNTs-OH. Surfactant concentration higher or lower than this value can weaken the dispersion quality of MWCNTs-OH.

6.
Sci Rep ; 7(1): 8258, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28811588

ABSTRACT

The dynamics of water confined in cement materials is still a matter of debate in spite of the fact that water has a major influence on properties such as durability and performance. In this study, we have investigated the dynamics of water confined in Portland cement (OPC) at different curing ages (3 weeks and 4 years after preparation) and at three water-to-cement ratios (w/c, 0.3, 0.4 and 0.5). Using broadband dielectric spectroscopy, we distinguish four different dynamics due to water molecules confined in the pores of different sizes of cements. Here we show how water dynamics is modified by the evolution in the microstructure (maturity) and the w/c ratio. The fastest dynamics (processes 1 and 2, representing very local water dynamics) are independent of water content and the degree of maturity whereas the slowest dynamics (processes 3 and 4) are dependent on the microstructure developed during curing. Additionally, we analyze the differences regarding the water dynamics when confined in synthetic C-S-H gel and in the C-S-H of Portland cement.

7.
Langmuir ; 31(17): 4964-72, 2015 May 05.
Article in English | MEDLINE | ID: mdl-25867059

ABSTRACT

Confined water in the slit mesopores of the mineral tobermorite provides an excellent model system for analyzing the dynamic properties of water confined in cement-like materials. In this work, we use broadband dielectric spectroscopy (BDS) to analyze the dynamic of water entrapped in this crystalline material. Two samples, one natural and one synthetic, were analyzed, and despite their similar structure, the motion of confined water in their zeolitic cavity displays considerably different behavior. The water dynamics splits into two different behaviors depending on the chemical nature of the otherwise identical structural environment: water molecules located in areas where the primary building units are SiO4 relax slowly compared to water molecules located in cavities built with both AlO4 and SiO4. Compared to water confined in regular porous systems, water restricted in tobermorite is slower, indicating that the mesopore structure induces high disorder in the water structure. A comparison with water confined in the C-S-H gel is also discussed in this work. The strong dynamical changes in water due to the presence of aluminum might have important implications in the chemical transport of ions within hydrated calcium silicates, a process that governs the leaching and chemical degradation of cement.


Subject(s)
Aluminum Oxide/chemistry , Calcium Compounds/chemistry , Minerals/chemistry , Silicates/chemistry , Water/chemistry , Capillary Action , Dielectric Spectroscopy , Porosity , Wettability
8.
J Colloid Interface Sci ; 450: 109-118, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25801139

ABSTRACT

In this work we study the influence of adding nano-silica (SiO2, Nyasil™) and aminopropyl (-(CH2)3-NH2,) functionalized silica nanoparticles (Stoga) during the synthesis of calcium-silicate-hydrate (C-S-H gel). Characterization by solid state (29)Si NMR and ATR-FTIR spectroscopy showed that the addition of both particle types increases the average length of the silicate chains in C-S-H gel being this effect slightly more important in the case of Stoga particles. In addition, (13)C NMR and XPS confirmed that the aminopropyl chain remains in the final product cleaved to silicon atoms at the end of the silicate chain of C-S-H gel whereas XRD measurements showed that this result in an increment in the basal distance compared with ordinary CSH. In addition, the dynamics of water within the pores of C-S-H gel was analyzed by broadband dielectric spectroscopy. We observed that water confined in C-S-H formed with the addition of nanoparticles is faster than that in plain C-S-H which can be related to a different porous structure in these materials.

9.
J Chem Phys ; 139(16): 164714, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182071

ABSTRACT

In this study, the rotational dynamics of hydration water confined in calcium-silicate-hydrate (C-S-H) gel with a water content of 22 wt.% was studied by broadband dielectric spectroscopy in broad temperature (110-300 K) and frequency (10(-1)-10(8) Hz) ranges. The C-S-H gel was used as a 3D confining system for investigating the possible existence of a fragile-to-strong transition for water around 220 K. Such transition was observed at 220 K in a previous study [Y. Zhang, M. Lagi, F. Ridi, E. Fratini, P. Baglioni, E. Mamontov and S. H. Chen, J. Phys.: Condens. Matter 20, 502101 (2008)] on a similar system, and it was there associated with a hidden critical point of bulk water. However, based on the experimental results presented here, there is no sign of a fragile-to-strong transition for water confined in C-S-H gel. Instead, the fragile-to-strong transition can be explained by a merging of two different relaxation processes at about 220 K.


Subject(s)
Calcium/chemistry , Phase Transition , Silicates/chemistry , Water/chemistry , Gels , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...