Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Evolution ; 77(6): 1382-1395, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36946381

ABSTRACT

Bacterial group II introns are large RNA enzymes that self-splice from primary transcripts. Following excision, they can invade various DNA target sites using RNA-based mobility pathways. As fast evolving retromobile elements, which move between genetic loci within and across species, their evolutionary history was proved difficult to study and infer. Here we identified several homologs of Ll.LtrB, the model group II intron from Lactococcus lactis, and traced back their evolutionary relationship through phylogenetic analyses. Our data demonstrate that the Ll.LtrB homologs in Lactococci originate from a single and recent lateral transfer event of Ef.PcfG from Enterococcus faecalis. We also show that these introns disseminated in Lactococci following recurrent episodes of independent mobility events in conjunction with occurrences of lateral transfer. Our phylogenies identified additional lateral transfer events from the environmental clade of the more diverged Lactococci introns to a series of low-GC gram-positive bacterial species including E. faecalis. We also determined that functional intron adaptation occurred early in Lactococci following Ef.PcfG acquisition from E. faecalis and that two of the more diverged Ll.LtrB homologs remain proficient mobile elements despite the significant number of mutations acquired. This study describes the first comprehensive evolutionary history of a bacterial group II intron.


Subject(s)
Bacteria , Bacterial Proteins , Introns , Bacterial Proteins/genetics , Phylogeny , Bacteria/genetics , RNA , DNA Transposable Elements
2.
Nucleic Acids Res ; 49(12): 6996-7010, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34157113

ABSTRACT

Group II introns can self-splice from RNA transcripts through branching, hydrolysis and circularization, being released as lariats, linear introns and circles, respectively. In contrast to branching, the circularization pathway is mostly based on assumptions and has been largely overlooked. Here, we address the molecular details of both transesterification reactions of the group II intron circularization pathway in vivo. We show that free E1 is recruited by the intron through base pairing interactions and that released intron circles can generate free E1 by the spliced exon reopening reaction. The first transesterification reaction was found to be induced inaccurately by the 3'OH of the terminal residue of free E1 at the 3' splice site, producing circularization intermediates with heterogeneous 3' ends. Nevertheless, specific terminal 3'OH, selected by a molecular ruler, was shown to precisely attack the 5' splice site and release intron circles with 3'-5' rather than 2'-5' bonds at their circularization junction. Our work supports a circularization model where the recruitment of free E1 and/or displacement of cis-E1 induce a conformational change of the intron active site from the pre-5' to the pre-3' splice site processing conformation, suggesting how circularization might initiate at the 3' instead of the 5' splice site.


Subject(s)
Introns , RNA, Catalytic/chemistry , Base Pairing , Esterification , Exons , Nucleic Acid Conformation , RNA Splice Sites , RNA Splicing
3.
Methods Mol Biol ; 2167: 3-11, 2021.
Article in English | MEDLINE | ID: mdl-32712911

ABSTRACT

Group II introns are noncoding sequences that interrupt genes, and that must be removed or spliced-out at the RNA level during gene expression. Following the transcription of interrupted genes, group II introns self-splice while concurrently ligating their flanking exons to generate mature mRNAs ready for translation. Ll.LtrB, the model group II intron from the gram-positive bacterium Lactococcus lactis, interrupts the gene coding for a relaxase enzyme that initiates the transfer of mobile elements by conjugation. This functional link between group II intron splicing and conjugative transfer enabled us to engineer highly sensitive splicing assays using the native biological context of Ll.LtrB. The splicing efficiency/conjugation assay was developed to determine the splicing competence of various Ll.LtrB mutants, whereas the splicing selection/conjugation assay was established to isolate splicing-proficient variants from a randomly generated bank of mutated introns.


Subject(s)
Bacterial Proteins/metabolism , Conjugation, Genetic , Endodeoxyribonucleases/metabolism , Introns/genetics , Lactococcus lactis/genetics , RNA Splicing , DNA Transposable Elements/genetics , Endodeoxyribonucleases/genetics , Lactococcus lactis/enzymology , Lactococcus lactis/metabolism , Mutation , Nucleic Acid Conformation , Sex Factors
4.
PLoS One ; 15(8): e0237367, 2020.
Article in English | MEDLINE | ID: mdl-32810148

ABSTRACT

Bacterial group II introns mostly behave as versatile retromobile genetic elements going through distinct cycles of gain and loss. These large RNA molecules are also ribozymes splicing autocatalytically from their interrupted pre-mRNA transcripts by two different concurrent pathways, branching and circularization. These two splicing pathways were shown to release in bacterial cells significant amounts of branched intron lariats and perfect end-to-end intron circles respectively. On one hand, released intron lariats can invade new sites in RNA and/or DNA by reverse branching while released intron circles are dead end spliced products since they cannot reverse splice through circularization. The presence of two parallel and competing group II intron splicing pathways in bacteria led us to investigate the conditions that influence the overall circle to lariat ratio in vivo. Here we unveil that removing a prominent processing site within the Ll.LtrB group II intron, raising growth temperature of Lactococcus lactis host cells and increasing the expression level of the intron-interrupted gene all increased the relative amount of released intron circles compared to lariats. Strengthening and weakening the base pairing interaction between the intron and its upstream exon respectively increased and decreased the overall levels of released intron circles in comparison to lariats. Host environment was also found to impact the circle to lariat ratio of the Ll.LtrB and Ll.RlxA group II introns from L. lactis and the Ef.PcfG intron from Enterococcus faecalis. Overall, our data show that multiple factors significantly influence the balance between released intron circles and lariats in bacterial cells.


Subject(s)
Introns/genetics , Lactococcus lactis/genetics , Gene Expression Regulation, Bacterial , Temperature
5.
Methods Mol Biol ; 2079: 95-107, 2020.
Article in English | MEDLINE | ID: mdl-31728964

ABSTRACT

Chimeric RNAs are the transcripts composed of exons from two separate genes or transcripts. Although the presence of these joined RNA molecules have mainly been documented in a variety of eukaryotes, we recently demonstrated that the Ll.LtrB group II intron, from the gram-positive bacterium Lactococcus lactis, can generate chimeric mRNAs through a novel intergenic trans-splicing pathway. Here we describe the detailed experimental procedures to detect group II intron-generated mRNA-mRNA chimeras from total RNA extracts using stringent reverse transcription conditions along with a reverse splicing-deficient group II intron as a negative control.


Subject(s)
Bacteria/genetics , Introns , RNA, Messenger/genetics , Lactococcus lactis/genetics , RNA Splicing , RNA, Bacterial , Reverse Transcriptase Polymerase Chain Reaction
6.
PLoS Genet ; 14(11): e1007792, 2018 11.
Article in English | MEDLINE | ID: mdl-30462638

ABSTRACT

Group II introns are ancient retroelements that significantly shaped the origin and evolution of contemporary eukaryotic genomes. These self-splicing ribozymes share a common ancestor with the telomerase enzyme, the spliceosome machinery as well as the highly abundant spliceosomal introns and non-LTR retroelements. More than half of the human genome thus consists of various elements that evolved from ancient group II introns, which altogether significantly contribute to key functions and genetic diversity in eukaryotes. Similarly, group II intron-related elements in bacteria such as abortive phage infection (Abi) retroelements, diversity generating retroelements (DGRs) and some CRISPR-Cas systems have evolved to confer important functions to their hosts. In sharp contrast, since bacterial group II introns are scarce, irregularly distributed and frequently spread by lateral transfer, they have mainly been considered as selfish retromobile elements with no beneficial function to their host. Here we unveil a new group II intron function that generates genetic diversity at the RNA level in bacterial cells. We demonstrate that Ll.LtrB, the model group II intron from Lactococcus lactis, recognizes specific sequence motifs within cellular mRNAs by base pairing, and invades them by reverse splicing. Subsequent splicing of ectopically inserted Ll.LtrB, through circularization, induces a novel trans-splicing pathway that generates exon 1-mRNA and mRNA-mRNA intergenic chimeras. Our data also show that recognition of upstream alternative circularization sites on intron-interrupted mRNAs release Ll.LtrB circles harboring mRNA fragments of various lengths at their splice junction. Intergenic trans-splicing and alternative circularization both produce novel group II intron splicing products with potential new functions. Overall, this work describes new splicing pathways in bacteria that generate, similarly to the spliceosome in eukaryotes, genetic diversity at the RNA level while providing additional functional and evolutionary links between group II introns, spliceosomal introns and the spliceosome.


Subject(s)
Bacteria/genetics , Introns , RNA, Bacterial/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , DNA Transposable Elements/genetics , Evolution, Molecular , Genetic Variation , Humans , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Models, Genetic , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , RNA, Circular , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Retroelements , Spliceosomes/genetics , Trans-Splicing
7.
BMC Evol Biol ; 16(1): 223, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27765015

ABSTRACT

BACKGROUND: Group II introns are catalytically active RNA and mobile retroelements present in certain eukaryotic organelles, bacteria and archaea. These ribozymes self-splice from the pre-mRNA of interrupted genes and reinsert within target DNA sequences by retrohoming and retrotransposition. Evolutionary hypotheses place these retromobile elements at the origin of over half the human genome. Nevertheless, the evolution and dissemination of group II introns was found to be quite difficult to infer. RESULTS: We characterized the functional and evolutionary relationship between the model group II intron from Lactococcus lactis, Ll.LtrB, and Ef.PcfG, a newly discovered intron from a clinical strain of Enterococcus faecalis. Ef.PcfG was found to be homologous to Ll.LtrB and to splice and mobilize in its native environment as well as in L. lactis. Interestingly, Ef.PcfG was shown to splice at the same level as Ll.LtrB but to be significantly less efficient to invade the Ll.LtrB recognition site. We also demonstrated that specific point mutations between the IEPs of both introns correspond to functional adaptations which developed in L. lactis as a response to selective pressure on mobility efficiency independently of splicing. The sequence of all the homologous full-length variants of Ll.LtrB were compared and shown to share a conserved pattern of mutation acquisition. CONCLUSIONS: This work shows that Ll.LtrB and Ef.PcfG are homologous and have a common origin resulting from a recent lateral transfer event followed by further adaptation to the new target site and/or host environment. We hypothesize that Ef.PcfG is the ancestor of Ll.LtrB and was initially acquired by L. lactis, most probably by conjugation, via a single event of horizontal transfer. Strong selective pressure on homing site invasion efficiency then led to the emergence of beneficial point mutations in the IEP, enabling the successful establishment and survival of the group II intron in its novel lactococcal environment. The current colonization state of Ll.LtrB in L. lactis was probably later achieved through recurring episodes of conjugation-based horizontal transfer as well as independent intron mobility events. Overall, our data provide the first evidence of functional adaptation of a group II intron upon invading a new host, offering strong experimental support to the theory that bacterial group II introns, in sharp contrast to their organellar counterparts, behave mostly as mobile elements.


Subject(s)
Bacteria/genetics , Enterococcus faecalis/genetics , Gene Transfer, Horizontal , Introns , Lactococcus lactis/genetics , Bacterial Proteins/genetics , DNA Transposable Elements , Mutation , Phylogeny , RNA Splicing , RNA, Catalytic/genetics
8.
Nucleic Acids Res ; 44(4): 1845-53, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26673697

ABSTRACT

Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3' splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria.


Subject(s)
Introns/genetics , Lactococcus lactis/genetics , RNA Splicing/genetics , RNA/genetics , DNA Transposable Elements , Exons/genetics , Metabolic Networks and Pathways/genetics
9.
RNA ; 21(7): 1286-93, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25956521

ABSTRACT

Group II introns are large ribozymes that require the assistance of intron-encoded or free-standing maturases to splice from their pre-mRNAs in vivo. They mainly splice through the classical branching pathway, being released as RNA lariats. However, group II introns can also splice through secondary pathways like hydrolysis and circularization leading to the release of linear and circular introns, respectively. Here, we assessed in vivo splicing of various constructs of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis. The study of excised intron junctions revealed, in addition to branched intron lariats, the presence of perfect end-to-end intron circles and alternatively circularized introns. Removal of the branch point A residue prevented Ll.LtrB excision through the branching pathway but did not hinder intron circle formation. Complete intron RNA circles were found associated with the intron-encoded protein LtrA forming nevertheless inactive RNPs. Traces of double-stranded head-to-tail intron DNA junctions were also detected in L. lactis RNA and nucleic acid extracts. Some intron circles and alternatively circularized introns harbored variable number of non-encoded nucleotides at their splice junction. The presence of mRNA fragments at the splice junction of some intron RNA circles provides insights into the group II intron circularization pathway in bacteria.


Subject(s)
Introns , Lactococcus lactis/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genes, Bacterial , Immunoprecipitation , Polymerase Chain Reaction , RNA, Catalytic/metabolism
10.
PLoS One ; 7(8): e41589, 2012.
Article in English | MEDLINE | ID: mdl-22876289

ABSTRACT

BACKGROUND: Group II introns are RNA enzymes that splice themselves from pre-mRNA transcripts. Most bacterial group II introns harbour an open reading frame (ORF), coding for a protein with reverse transcriptase, maturase and occasionally DNA binding and endonuclease activities. Some ORF-containing group II introns were shown to be mobile retroelements that invade new DNA target sites. From an evolutionary perspective, group II introns are hypothesized to be the ancestors of the spliceosome-dependent nuclear introns and the small nuclear RNAs (snRNAs--U1, U2, U4, U5 and U6) that are important functional elements of the spliceosome machinery. The ability of some group II introns fragmented in two or three pieces to assemble and undergo splicing in trans supports the theory that spliceosomal snRNAs evolved from portions of group II introns. METHODOLOGY/PRINCIPAL FINDINGS: We used a transposon-based genetic screen to explore the ability of the Ll.LtrB group II intron from the Gram-positive bacterium Lactococcus lactis to be fragmented into three pieces in vivo. Trans-splicing tripartite variants of Ll.LtrB were selected using a highly efficient and sensitive trans-splicing/conjugation screen. We report that numerous fragmentation sites located throughout Ll.LtrB support tripartite trans-splicing, showing that this intron is remarkably tolerant to fragmentation. CONCLUSIONS/SIGNIFICANCE: This work unveils the great versatility of group II intron fragments to assemble and accurately trans-splice their flanking exons in vivo. The selected introns represent the first evidence of functional tripartite group II introns in bacteria and provide experimental support for the proposed evolutionary relationship between group II introns and snRNAs.


Subject(s)
Bacterial Proteins/genetics , DNA Transposable Elements/genetics , Introns , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , Transposases/metabolism , Conjugation, Genetic , Nucleic Acid Conformation , RNA Isoforms , RNA Splicing , RNA, Bacterial/chemistry , RNA, Bacterial/genetics , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Trans-Splicing
11.
Am J Physiol Heart Circ Physiol ; 296(1): H119-26, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18978188

ABSTRACT

The cyclin-dependent kinase inhibitor p57(kip2) regulates the cell cycle of trophoblastic cells. It has been established by a Japanese group that the heterozygous p57(kip2) knockout (p57(-/+)) mice are a good model of preeclampsia as they develop hypertension, proteinuria, and placental pathology. However, apart from the placental pathology, we could not observe these symptoms in our laboratory. Hence, we investigated the impact of diet and stress on this model. To do so, we compared the effects of the Japanese diet to that of the North American diet used by our animal facility. Furthermore, the impact of stress was determined by placing the mice in a restraining device before and at the end of gestation. Although the Japanese diet did not have any impact on blood pressure or proteinuria, the mice did develop endothelial dysfunction, left ventricular hypertrophy, as well as increased placental pathology. Also, all mice had smaller litters when fed the Japanese diet. However, stress response of these mice was not increased during gestation; in fact, a decrease was observed in the p57(-/+) mice, suggesting that this was probably not a player in the development of the pathology. Taken together, these results suggest that other environmental factors may have been implicated in the development of preeclampsia-like symptoms in this animal model. Moreover, we demonstrated that placental pathology and genetic factors are not sufficient to trigger preeclampsia-like symptoms in this model and that the diet might play an important part in the development of this multifactorial disease.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p57/physiology , Diet , Pre-Eclampsia/etiology , Stress, Psychological/complications , Animals , Blood Pressure/physiology , Environment , Female , Mesenteric Arteries/drug effects , Mesenteric Arteries/pathology , Mesenteric Arteries/physiopathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Placenta/metabolism , Placenta/pathology , Pre-Eclampsia/pathology , Pregnancy , Proteinuria/metabolism , Restraint, Physical , Stress, Psychological/pathology , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...