Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(12): 17934-17943, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32679995

ABSTRACT

We theoretically and experimentally investigate Tamm plasmon (TP) modes in a metal/semiconductor distributed Bragg reflector (DBR) interface. A thin Ag (silver) layer with a thickness (55 nm from simulation) that is optimized to guarantee a low reflectivity at the resonance was deposited on nanoporous GaN DBRs fabricated using electrochemical (EC) etching on freestanding semipolar (2021¯) GaN substrates. The reflectivity spectra of the DBRs are compared before and after the Ag deposition and with that of a blanket Ag layer deposited on GaN. The experimental results indicate the presence of a TP mode at ∼ 454 nm on the structure after the Ag deposition, which is also supported by theoretical calculations using a transfer-matrix algorithm. The results from mode dispersion with energy-momentum reflectance spectroscopy measurements also support the presence of a TP mode at the metal-nanoporous GaN DBR interface. An active medium can also be accommodated within the mode for optoelectronics and photonics. Moreover, the simulation results predict a sensitivity of the TP mode wavelength to the ambient (∼ 4-7 nm shift when changing the ambient within the pores from air with n = 1 to isopropanol n = 1.3), suggesting an application of the nanoporous GaN-based TP structure for optical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...