Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Analyst ; 148(23): 5949-5956, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37855743

ABSTRACT

Highly sensitive and selective choline microbiosensors were constructed by microcontact printing (µCP) of choline oxidase (ChOx) in a crosslinked, polyamine-functionalized zwitterionic polymer matrix on microelectrode arrays (MEAs). µCP has emerged as a potential means to create implantable, multiplexed sensor microprobes, which requires the targeted deposition of different sensor materials to specific microelectrode sites on a MEA. However, the less than sufficient enzyme loading and inadequate spatial resolution achieved with current µCP approaches has limited adoption of the method for electroenzymatic microsensors. A novel polymer, poly(2-methacryloyloxyethyl phosphorylcholine)-g-poly(allylamine hydrochloride) (PMPC-g-PAH), has been developed to address this challenge. PMPC-g-PAH contributes to a higher viscosity "ink" that enables thicker immobilized ChOx deposits of high spatial resolution while also providing a hydrophilic, biocompatible microenvironment for the enzyme. Electroenzymatic choline microbiosensors with sensitivity of 639 ± 96 nA µM-1 cm-2 (pH 7.4; n = 4) were constructed that also are selective against both ascorbic acid and dopamine, which are potential electroactive interfering compounds in the mammalian brain. The high sensitivities achieved can lead to smaller MEA microprobes that minimize tissue damage and make possible the monitoring of multiple neurochemicals simultaneously in vivo with high spatial resolution.


Subject(s)
Alcohol Oxidoreductases , Polymers , Animals , Choline , Mammals
2.
Sens Diagn ; 2(2): 468, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36942047

ABSTRACT

[This corrects the article DOI: 10.1039/D2SD00128D.].

3.
Sens Diagn ; 2(1): 163-167, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36741249

ABSTRACT

An amplification-free, nanopore-based nucleic acid detection platform has been demonstrated for rapid, 16S rRNA sequence-specific detection of Neisseria gonorrhoeae at 10-100 CFU mL-1 in human urine against background bacterial flora at 1000 CFU mL-1. Gonorrhea is a very common notifiable communicable disease, antibiotic resistant strains have emerged, and the rate of reported gonococcal infections continues to increase. Since rapid clinical identification of bacterial pathogens in clinical samples is needed to guide proper antibiotic treatment and to control disease spread, it is important to engineer rapid, sensitive, selective, and inexpensive point-of-care (POC) diagnostic devices for pathogens such as N. gonorrhoeae. Our detector technology is based on straightforward conductometric detection of sustained blockage of a glass nanopore. Charge neutral, complementary peptide nucleic acid probes are conjugated to polystyrene beads to capture N. gonorrhoeae 16S rRNA selectively. In the presence of an electric field applied externally through a glass nanopore, the PNA-microbead conjugates that acquire substantial negative charge upon target hybridization are driven to the smaller diameter nanopore. At least partial blockage of the nanopore results in a sustained drop in ionic current that can be measured easily with simple electronics. The ability to detect N. gonorrhoeae over the range of 10 to 100 CFU mL-1 spiked in human urine was demonstrated successfully with estimated sensitivity and specificity of ∼98% and ∼100%, respectively. No false positives were observed for the control group of representative background flora (E. coli, K. pneumoniae, and E. faecalis) at 1000 CFU mL-1. Also, N. gonorrhoeae at 50 CFU mL-1 was successfully detected against 1000 CFU mL-1 of background flora in urine. These results suggest that this amplification-free technology may serve as the basis for rapid, inexpensive, low-power detection of pathogens in clinical samples at the POC.

4.
ACS Sens ; 7(12): 3644-3653, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36399772

ABSTRACT

Monitoring neurochemical signaling across time scales is critical to understanding how brains encode and store information. Flexible (vs stiff) devices have been shown to improve in vivo monitoring, particularly over longer times, by reducing tissue damage and immunological responses. Here, we report our initial steps toward developing flexible and implantable neuroprobes with aptamer-field-effect transistor (FET) biosensors for neurotransmitter monitoring. A high-throughput process was developed to fabricate thin, flexible polyimide probes using microelectromechanical-system (MEMS) technologies, where 150 flexible probes were fabricated on each 4 in. Si wafer. Probes were 150 µm wide and 7 µm thick with two FETs per tip. The bending stiffness was 1.2 × 10-11 N·m2. Semiconductor thin films (3 nm In2O3) were functionalized with DNA aptamers for target recognition, which produces aptamer conformational rearrangements detected via changes in FET conductance. Flexible aptamer-FET neuroprobes detected serotonin at femtomolar concentrations in high-ionic strength artificial cerebrospinal fluid. A straightforward implantation process was developed, where microfabricated Si carrier devices assisted with implantation such that flexible neuroprobes detected physiological relevant serotonin in a tissue-hydrogel brain mimic.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Serotonin , Semiconductors , Aptamers, Nucleotide/chemistry
5.
ACS Chem Neurosci ; 12(22): 4275-4285, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34734695

ABSTRACT

Detailed simulations show that the relationship between electroenzymatic glutamate (Glut) sensor performance in vitro and that modeled in vivo is complicated by the influence of both resistances to mass transfer and clearance rates of Glut and H2O2 in the brain extracellular space (ECS). Mathematical modeling provides a powerful means to illustrate how these devices are expected to respond to a variety of conditions in vivo in ways that cannot be accomplished readily using existing experimental techniques. Through the use of transient model simulations in one spatial dimension, it is shown that the sensor response in vivo may exhibit much greater dependence on H2O2 mass transfer and clearance in the surrounding tissue than previously thought. This dependence may lead to sensor signals more than double the expected values (based on prior sensor calibration in vitro) for Glut release events within a few microns of the sensor surface. The sensor response in general is greatly affected by the distance between the device and location of Glut release, and apparent concentrations reported by simulated sensors consistently are well below the actual Glut levels for events occurring at distances greater than a few microns. Simulations of transient Glut concentrations, including a physiologically relevant bolus release, indicate that detection of Glut signaling likely is limited to events within 30 µm of the sensor surface based on representative sensor detection limits. It follows that important limitations also exist with respect to interpretation of decays in sensor signals, including relation of such data to actual Glut concentration declines in vivo. Thus, the use of sensor signal data to determine quantitatively the rates of Glut uptake from the brain ECS likely is problematic. The model is designed to represent a broad range of relevant physiological conditions, and although limited to one dimension, provides much needed guidance regarding the interpretation in general of electroenzymatic sensor data gathered in vivo.


Subject(s)
Biosensing Techniques , Glutamic Acid , Calibration , Hydrogen Peroxide , Models, Theoretical
6.
Sci Adv ; 7(48): eabj7422, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34818033

ABSTRACT

While tools for monitoring in vivo electrophysiology have been extensively developed, neurochemical recording technologies remain limited. Nevertheless, chemical communication via neurotransmitters plays central roles in brain information processing. We developed implantable aptamer­field-effect transistor (FET) neuroprobes for monitoring neurotransmitters. Neuroprobes were fabricated using high-throughput microelectromechanical system (MEMS) technologies, where 150 probes with shanks of either 150- or 50-µm widths and thicknesses were fabricated on 4-inch Si wafers. Nanoscale FETs with ultrathin (~3 to 4 nm) In2O3 semiconductor films were prepared using sol-gel processing. The In2O3 surfaces were coupled with synthetic oligonucleotide receptors (aptamers) to recognize and to detect the neurotransmitter serotonin. Aptamer-FET neuroprobes enabled femtomolar serotonin detection limits in brain tissue with minimal biofouling. Stimulated serotonin release was detected in vivo. This study opens opportunities for integrated neural activity recordings at high spatiotemporal resolution by combining these aptamer-FET sensors with other types of Si-based implantable probes to advance our understanding of brain function.

7.
Curr Opin Biotechnol ; 71: 145-150, 2021 10.
Article in English | MEDLINE | ID: mdl-34375812

ABSTRACT

The broad spectrum of approaches for nucleic acid amplification-free detection of DNA and RNA at single-digit attomolar (10-18 M) concentration and lower is reviewed. These low concentrations correspond roughly to the most clinically desirable detection range for pathogen-specific nucleic acid as well as the detection limits of commercially available, nucleic acid amplification tests based primarily on polymerase chain reaction (PCR). The need for more rapid and inexpensive, yet still highly accurate tests, has become evident during the pandemic. It is expected that publication of reports describing improved tests will accelerate soon, and this review covers the wide variety of detection methods based on both optical and electrical measurements that have been conceived over recent years, enabled generally by the advent of nanotechnology.


Subject(s)
Nucleic Acids , RNA , DNA/genetics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , RNA/genetics
8.
Analyst ; 146(3): 1040-1047, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33325460

ABSTRACT

A high performance, electroenzymatic microsensor for choline based on choline oxidase (ChOx) immobilized on Pt coated with permselective polymer layers has been created that exhibits sensitivity approaching the theoretical performance limit. Sensor construction was guided by simulations performed with a detailed mathematical model. Implantable microsensors with an array of electroenzymatic sensing sites provide a means to record concentration changes of choline, an effective surrogate for acetylcholine due to its very rapid turnover in the brain, and other neurochemicals in vivo. However, electroenzymatic sensors generally have insufficient sensitivity and response time to monitor neurotransmitter signaling on the millisecond timescale with cellular-level spatial resolution. Model simulations suggested that choline sensor performance can be improved significantly by optimizing immobilized ChOx layer thickness and minimizing the thicknesses of permselective polymer coatings as well. Electroenzymatic choline sensors constructed with a ∼5 µm-thick crosslinked ChOx layer atop 200 nm-thick permselective films (poly(m-phenylenediamine) and Nafion) exhibited unprecedented sensitivity and response time of 660 ± 40 nA µM-1 cm-2 at 37 °C and 0.36 ± 0.05 s, respectively, while maintaining excellent selectivity. Such performance characteristics provide greater flexibility in the design of microelectrode array (MEA) probes with near cellular-scale sensing sites arranged in more dense arrays. Also, faster response times enable better resolution of transient acetylcholine signals and better correlation of these events with electrophysiological recordings so as to advance study of brain function.


Subject(s)
Biosensing Techniques , Choline , Acetylcholine , Microelectrodes , Polymers
9.
Lab Chip ; 20(8): 1390-1397, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32211718

ABSTRACT

A multifunctional chemical neural probe fabrication process exploiting PDMS thin-film transfer to incorporate a microfluidic channel onto a silicon-based microelectrode array (MEA) platform, and enzyme microstamping to provide multi-analyte detection is described. The Si/PDMS hybrid chemtrode, modified with a nano-based on-probe IrOx reference electrode, was validated in brain phantoms and in rat brain.


Subject(s)
Microfluidics , Prostheses and Implants , Animals , Microelectrodes , Rats
10.
Analyst ; 145(7): 2602-2611, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-31998887

ABSTRACT

The sensitivity and response time of glutamate sensors based on glutamate oxidase immobilized on planar platinum microelectrodes have been improved to near the theoretical performance limits predicted by a detailed mathematical model. Microprobes with an array of electroenzymatic sensing sites have emerged as useful tools for the monitoring of glutamate and other neurotransmitters in vivo; and implemented as such, they can be used to study many complex neurological diseases and disorders including Parkinson's disease and drug addiction. However, less than optimal sensitivity and response time has limited the spatiotemporal resolution of these promising research tools. A mathematical model has guided systematic improvement of an electroenzymatic glutamate microsensor constructed with a 1-2 µm-thick crosslinked glutamate oxidase layer and underlying permselective coating of polyphenylenediamine and Nafion reduced to less than 200 nm thick. These design modifications led to a nearly 6-fold improvement in sensitivity to 320 ± 20 nA µM-1 cm-2 at 37 °C and a ∼10-fold reduction in response time to 80 ± 10 ms. Importantly, the sensitivity and response times were attained while maintaining a low detection limit and excellent selectivity. Direct measurement of the transport properties of the enzyme and polymer layers used to create the biosensors enabled improvement of the mathematical model as well. Subsequent model simulations indicated that the performance characteristics achieved with the optimized biosensors approach the theoretical limits predicted for devices of this construction. Such high-performance glutamate biosensors will be more effective in vivo at a size closer to cellular dimension and will enable better correlation of glutamate signaling events with electrical recordings.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Electrochemical Techniques/methods , Glutamic Acid/analysis , Amino Acid Oxidoreductases/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Fluorocarbon Polymers/chemistry , Glutamic Acid/metabolism , Hydrogen Peroxide/chemistry , Micro-Electrical-Mechanical Systems , Microelectrodes , Oxidation-Reduction , Polymers/chemistry
11.
Biol Psychiatry ; 86(5): 388-396, 2019 09 01.
Article in English | MEDLINE | ID: mdl-30955842

ABSTRACT

BACKGROUND: Environmental reward-predictive stimuli provide a major source of motivation for adaptive reward pursuit behavior. This cue-motivated behavior is known to be mediated by the nucleus accumbens (NAc) core. The cholinergic interneurons in the NAc are tonically active and densely arborized and thus well suited to modulate NAc function. However, their causal contribution to adaptive behavior remains unknown. Here we investigated the function of NAc cholinergic interneurons in cue-motivated behavior. METHODS: We used chemogenetics, optogenetics, pharmacology, and a translationally analogous Pavlovian-to-instrumental transfer behavioral task designed to assess the motivating influence of a reward-predictive cue over reward-seeking actions in male and female rats. RESULTS: The data show that NAc cholinergic interneuron activity critically opposes the motivating influence of appetitive cues. Chemogenetic inhibition of NAc cholinergic interneurons augmented cue-motivated behavior. Optical stimulation of acetylcholine release from NAc cholinergic interneurons prevented cues from invigorating reward-seeking behavior, an effect that was mediated by activation of ß2-containing nicotinic acetylcholine receptors. CONCLUSIONS: NAc cholinergic interneurons provide a critical regulatory influence over adaptive cue-motivated behavior and therefore are a potential therapeutic target for the maladaptive cue-motivated behavior that marks many psychiatric conditions, including addiction and depression.


Subject(s)
Cholinergic Antagonists/pharmacology , Dopamine/metabolism , Interneurons/physiology , Motivation/physiology , Nucleus Accumbens/physiology , Acetylcholine/metabolism , Animals , Conditioning, Classical , Conditioning, Operant , Cues , Feeding Behavior/drug effects , Female , Interneurons/drug effects , Male , Motivation/drug effects , Nucleus Accumbens/drug effects , Rats , Rats, Long-Evans , Rats, Transgenic , Receptors, Cholinergic/metabolism , Reward , Transfer, Psychology
12.
Biosens Bioelectron ; 131: 37-45, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30818131

ABSTRACT

Flexible neural probes have been pursued previously to minimize the mechanical mismatch between soft neural tissues and implants and thereby improve long-term performance. However, difficulties with insertion of such probes deep into the brain severely restricts their utility. We describe a solution to this problem using gallium (Ga) in probe construction, taking advantage of the solid-to-liquid phase change of the metal at body temperature and probe shape deformation to provide temperature-dependent control of stiffness over 5 orders of magnitude. Probes in the stiff state were successfully inserted 2 cm-deep into agarose gel "brain phantoms" and into rat brains under cooled conditions where, upon Ga melting, they became ultra soft, flexible, and stretchable in all directions. The current 30 µm-thick probes incorporated multilayer, deformable microfluidic channels for chemical agent delivery, electrical interconnects through Ga wires, and high-performance electrochemical glutamate sensing. These PDMS-based microprobes of ultra-large tunable stiffness (ULTS) should serve as an attractive platform for multifunctional chronic neural implants.


Subject(s)
Biosensing Techniques , Brain/drug effects , Gallium/administration & dosage , Animals , Brain/pathology , Electrodes, Implanted , Gallium/chemistry , Humans , Polymers/chemistry , Rats , Temperature
13.
Analyst ; 143(20): 5008-5013, 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30226501

ABSTRACT

High performance microprobes for combined sensing of glucose and choline were fabricated using microcontact printing (µCP) to transfer choline oxidase (ChOx) and glucose oxidase (GOx) onto targeted sites on microelectrode arrays (MEAs). Most electroenzymatic sensing sites on MEAs for neuroscience applications are created by manual enzyme deposition, which becomes problematic when the array feature size is less than or equal to ∼100 µm. The µCP process used here relies on use of soft lithography to create features on a polydimethylsiloxane (PDMS) microstamp that correspond to the dimensions and array locations of targeted, microscale sites on a MEA. Precise alignment of the stamp with the MEA is also required to transfer enzyme only onto the specified microelectrode(s). The dual sensor fabrication process began with polyphenylenediamine (PPD) electrodeposition on all Pt microelectrodes to block common interferents (e.g., ascorbic acid and dopamine) found in brain extracellular fluid. Next, a chitosan film was electrodeposited to serve as an adhesive layer. The two enzymes, ChOx and GOx, were transferred onto different microelectrodes of 2 × 2 arrays using two different PDMS stamps and a microscope for stamp alignment. Using constant potential amperometry, the combined sensing microprobe was confirmed to have high sensitivity for choline and glucose (286 and 117 µA mM cm-2, respectively) accompanied by low detection limits (1 and 3 µM, respectively) and rapid response times (≤2 s). This work demonstrates the use of µCP for facile creation of multianalyte sensing microprobes by targeted deposition of enzymes onto preselected sites of a microelectrode array.


Subject(s)
Biosensing Techniques/methods , Choline/analysis , Dimethylpolysiloxanes/chemistry , Glucose/analysis , Alcohol Oxidoreductases/chemistry , Electrochemical Techniques/methods , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Limit of Detection , Microelectrodes , Sensitivity and Specificity
14.
Lab Chip ; 18(15): 2291-2299, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987290

ABSTRACT

A nucleic acid amplification-free, optics-free platform has been demonstrated for sequence-specific detection of Escherichia coli (E. coli) 16S rRNA at 1 aM (10-18 M) against a 106-fold (1 pM) background of Pseudomonas putida (P. putida) RNA. This work was driven by the need for simple, rapid, and low cost means for species-specific bacterial detection at low concentration. Our simple, conductometric sensing device functioned by detecting blockage of a nanopore fabricated in a sub-micron-thick glass membrane. Upon sequence-specific binding of target 16S rRNA, otherwise charge-neutral, PNA oligonucleotide probe-polystyrene bead conjugates become electrophoretically mobile and are driven to the glass nanopore of lesser diameter, which is blocked, thereby generating a large, sustained and readily observable step decrease in ionic current. No false positive signals were observed with P. putida RNA when this device was configured to detect E. coli 16S rRNA. Also, when a universal PNA probe complementary to the 16S rRNA of both E. coli and P. putida was conjugated to beads, a positive response to rRNA of both bacterial species was observed. Finally, the device readily detected E. coli at 10 CFU mL-1 in a 1 mL sample, also against a million-fold background of viable P. putida. These results suggest that this new device may serve as the basis for small, portable, low power, and low-cost systems for rapid detection of specific bacterial species in clinical samples, food, and water.


Subject(s)
Biosensing Techniques/methods , Escherichia coli/isolation & purification , Pseudomonas putida/isolation & purification , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Base Sequence , Biosensing Techniques/economics , Costs and Cost Analysis , Escherichia coli/genetics , Limit of Detection , Microspheres , Nucleic Acid Hybridization , Peptide Nucleic Acids/chemistry , Pseudomonas putida/genetics , RNA, Ribosomal, 16S/chemistry , Time Factors
15.
ACS Chem Neurosci ; 9(2): 241-251, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29076724

ABSTRACT

Simulations conducted with a detailed model of glutamate biosensor performance describe the observed sensor performance well, illustrate the limits of sensor performance, and suggest a path toward sensor optimization. Glutamate is the most important excitatory neurotransmitter in the brain, and electroenzymatic sensors have emerged as a useful tool for the monitoring of glutamate signaling in vivo. However, the utility of these sensors currently is limited by their sensitivity and response time. A mathematical model of a typical glutamate biosensor consisting of a Pt electrode coated with a permselective polymer film and a top layer of cross-linked glutamate oxidase has been constructed in terms of differential material balances on glutamate, H2O2, and O2 in one spatial dimension. Simulations suggest that reducing thicknesses of the permselective polymer and enzyme layers can increase sensitivity ∼6-fold and reduce response time ∼7-fold, and thereby improve resolution of transient glutamate signals. At currently employed enzyme layer thicknesses, both intrinsic enzyme kinetics and enzyme deactivation likely are masked by mass transfer. However, O2-dependence studies show essentially no reduction in signal at the lowest anticipated O2 concentrations for expected glutamate concentrations in the brain and that O2 transport limitations in vitro are anticipated only at glutamate concentrations in the mM range. Finally, the limitations of current biosensors in monitoring glutamate transients is simulated and used to illustrate the need for optimized biosensors to report glutamate signaling accurately on a subsecond time scale. This work demonstrates how a detailed model can be used to guide optimization of electroenzymatic sensors similar to that for glutamate and to ensure appropriate interpretation of data gathered using such biosensors.


Subject(s)
Biosensing Techniques , Glutamic Acid/chemistry , Models, Theoretical , Biosensing Techniques/instrumentation , Computer Simulation , Enzymes, Immobilized/chemistry , Equipment Design , Hydrogen Peroxide/chemistry , Kinetics , Oxidoreductases/chemistry , Oxygen/chemistry , Polymers/chemistry
16.
Electroanalysis ; 29(10): 2300-2306, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29628750

ABSTRACT

High-performance biosensors were fabricated by efficiently transferring enzyme onto Pt electrode surfaces using a polydimethylsiloxane (PDMS) stamp. Polypyrrole and Nafion were coated first on the electrode surface to act as permselective films for exclusion of both anionic and cationic electrooxidizable interfering compounds. A chitosan film then was electrochemically deposited to serve as an adhesive layer for enzyme immobilization. Glucose oxidase (GOx) was selected as a model enzyme for construction of a glucose biosensor, and a mixture of GOx and bovine serum albumin was stamped onto the chitosan-coated surface and subsequently crosslinked using glutaraldehyde vapor. For the optimized fabrication process, the biosensor exhibited excellent performance characteristics including a linear range up to 2 mM with sensitivity of 29.4 ± 1.3 µA mM-1 cm-2 and detection limit of 4.3 ± 1.7 µM (S/N = 3) as well as a rapid response time of ~2 s. In comparison to those previously described, this glucose biosensor exhibits an excellent combination of high sensitivity, low detection limit, rapid response time, and good selectivity. Thus, these results support the use of PDMS stamping as an effective enzyme deposition method for electroenzymatic biosensor fabrication, which may prove especially useful for the deposition of enzyme at selected sites on microelectrode array microprobes of the kind used for neuroscience research in vivo.

17.
Biosensors (Basel) ; 6(3)2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27455337

ABSTRACT

A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli) 16S rRNA at 10 fM, which corresponds to ~100-1000 colony forming units/mL (CFU/mL) depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD) of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids.


Subject(s)
Biosensing Techniques , Polymerase Chain Reaction , RNA, Bacterial , RNA, Ribosomal, 16S , Biosensing Techniques/methods , Biosensing Techniques/standards , Escherichia coli/genetics , Microspheres , Nucleic Acid Hybridization , Sensitivity and Specificity
19.
Sci Rep ; 5: 12511, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26212790

ABSTRACT

Environmental stimuli have the ability to generate specific representations of the rewards they predict and in so doing alter the selection and performance of reward-seeking actions. The basolateral amygdala participates in this process, but precisely how is unknown. To rectify this, we monitored, in near-real time, basolateral amygdala glutamate concentration changes during a test of the ability of reward-predictive cues to influence reward-seeking actions (Pavlovian-instrumental transfer). Glutamate concentration was found to be transiently elevated around instrumental reward seeking. During the Pavlovian-instrumental transfer test these glutamate transients were time-locked to and correlated with only those actions invigorated by outcome-specific motivational information provided by the reward-predictive stimulus (i.e., actions earning the same specific outcome as predicted by the presented CS). In addition, basolateral amygdala AMPA, but not NMDA glutamate receptor inactivation abolished the selective excitatory influence of reward-predictive cues over reward seeking. These data support [corrected] the hypothesis that transient glutamate release in the BLA can encode the outcome-specific motivational information provided by reward-predictive stimuli.


Subject(s)
Amygdala/metabolism , Anticipation, Psychological/physiology , Conditioning, Operant/physiology , Glutamic Acid/metabolism , Reward , Adaptation, Physiological/physiology , Animals , Choice Behavior/physiology , Cues , Extinction, Psychological/physiology , Male , Neurotransmitter Agents/metabolism , Rats , Rats, Long-Evans
20.
Anal Chem ; 86(19): 9638-43, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25203740

ABSTRACT

Target DNA fragments at 10 fM concentration (approximately 6 × 10(5) molecules) were detected against a DNA background simulating the noncomplementary genomic DNA present in real samples using a simple, PCR-free, optics-free approach based on electromechanical signal transduction. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is highly desired for a range of diverse applications. We previously described a potentially low-cost device for sequence-specific nucleic acid detection based on conductance change measurement of a pore blocked by electrophoretically mobilized bead-(peptide nucleic acid probe) conjugates upon hybridization with target nucleic acid. Here, we demonstrate the operation of our device with longer DNA targets, and we describe the resulting improvement in the limit of detection (LOD). We investigated the detection of DNA oligomers of 110, 235, 419, and 1613 nucleotides at 1 pM to 1 fM and found that the LOD decreased as DNA length increased, with 419 and 1613 nucleotide oligomers detectable down to 10 fM. In addition, no false positive responses were obtained with noncomplementary, control DNA fragments of similar length. The 1613-base DNA oligomer is similar in size to 16S rRNA, which suggests that our device may be useful for detection of pathogenic bacteria at clinically relevant concentrations based on recognition of species-specific 16S rRNA sequences.


Subject(s)
DNA/chemistry , Signal Transduction , Limit of Detection
SELECTION OF CITATIONS
SEARCH DETAIL
...