Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Polymers (Basel) ; 16(16)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39204565

ABSTRACT

In this work, physically crosslinked injectable hydrogels based on carrageenan, locust bean gum, and gelatin, and mechanically nano-reinforced with green graphene oxide (GO), were developed to address the challenge of finding materials with a good balance between injectability and mechanical properties. The effect of GO content on the rheological and mechanical properties, injectability, swelling behavior, and biocompatibility of the nanocomposite hydrogels was studied. The hydrogels' morphology, assessed by FE-SEM, showed a homogeneous porous architecture separated by thin walls for all the GO loadings investigated. The rheology measurements evidence that G' > G″ over the whole frequency range, indicating the dominant elastic nature of the hydrogels and the difference between G' over G″ depends on the GO content. The GO incorporation into the biopolymer network enhanced the mechanical properties (ca. 20%) without appreciable change in the injectability of the nanocomposite hydrogels, demonstrating the success of the approach described in this work. In addition, the injectable hydrogels with GO loadings ≤0.05% w/v exhibit negligible toxicity for 3T3-L1 fibroblasts. However, it is noted that loadings over 0.25% w/v may affect the cell proliferation rate. Therefore, the nano-reinforced injectable hybrid hydrogels reported here, developed with a fully sustainable approach, have a promising future as potential materials for use in tissue repair.

2.
Int J Biol Macromol ; 235: 123777, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36812972

ABSTRACT

Injectable and biocompatible novel hybrid hydrogels based on physically crosslinked natural biopolymers and green graphene for potential use in tissue engineering are reported. Kappa and iota carrageenan, locust bean gum and gelatin are used as biopolymeric matrix. The effect of green graphene content on the swelling behavior, mechanical properties and biocompatibility of the hybrid hydrogels is investigated. The hybrid hydrogels present a porous network with three-dimensionally interconnected microstructures, with lower pore size than that of the hydrogel without graphene. The addition of graphene into the biopolymeric network improves the stability and the mechanical properties of the hydrogels in phosphate buffer saline solution at 37 °C without noticeable change in the injectability. The mechanical properties of the hybrid hydrogels were enhanced by varying the dosage of graphene between 0.025 and 0.075 w/v%. In this range, the hybrid hydrogels preserve their integrity during mechanical test and recover the initial shape after removing the applied stress. Meanwhile, hybrid hydrogels with graphene content of up to 0.05 w/v% exhibit good biocompatibility for 3T3-L1 fibroblasts; the cells proliferate inside the gel structure and show higher spreading after 48 h. These injectable hybrid hydrogels with graphene have promising future as materials for tissue repair.


Subject(s)
Graphite , Carrageenan/chemistry , Graphite/chemistry , Hydrogels/chemistry , Tissue Engineering , Porosity , Gelatin/chemistry , Biocompatible Materials/chemistry
3.
Polymers (Basel) ; 14(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36080578

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) films were prepared using a cast film technique. Dioxane was chosen over other polymer solvents as it resulted in homogenous films with better morphology. Several plasticizers with different molecular weights and concentrations were added to the biopolymer solution prior to casting. Thermal, crystalline, and permeability properties were analyzed by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and both water vapor and oxygen transmission rate analysis. In general, the addition of plasticizers decreased the glass transition temperature (Tg), cold crystallization temperatures (Tcc), melting temperatures, as well as crystallinity degrees and increased the crystallite sizes and water vapor and oxygen transmission rates. The use of isosorbide and low-molecular-weight poly(ethylene glycol) (PEG) lowered the Tg around 30 °C at the highest used concentration, also being the most effective in increasing the crystallite size. When considering isosorbide and low-molecular-weight poly(ethylene glycol) (PEG) as very good plasticizers for PHBH, the question of which plasticizer to use strongly relies on the desired PHBH application.

SELECTION OF CITATIONS
SEARCH DETAIL