Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 16(5): e0242390, 2021.
Article in English | MEDLINE | ID: mdl-33961628

ABSTRACT

In several developing countries, studies on antimicrobial resistance among bacteria from food animals are rare mostly because of under-resourced laboratories. The objective of this study was to develop and field-test a low cost protocol to estimate the isolate- and sample-level prevalence of resistance to critically important antibiotics among Escherichia coli and Salmonella isolated from dairy cattle feces. Using a predesigned protocol, fecal samples were collected to isolate non-type-specific E. coli and Salmonella using selective media without antibiotic supplements. Besides, samples were screened for E. coli and Salmonella isolates not susceptible to third-generation cephalosporins and quinolones using selective media supplemented with cefotaxime (1.0 µg/mL) and ciprofloxacine (0.5 µg/mL), respectively. All bacterial isolates were further tested for antibiotic susceptibility using disk diffusion. Bacterial isolates not susceptible to third-generation cephalosporins were tested for extended spectrum beta-lactamase (ESBL) phenotype using the combination disk test. Molecular methods were performed on selected bacterial isolates to identify and distinguish genetic determinants associated with the observed phenotypes. Among 85 non-type-specific E. coli isolated from MacConkey agar without antibiotics, the isolate-level prevalence of resistance to tetracycline was the highest (8.2%). Among 37 E. coli recovered from MacConkey agar with cefotaxime, 56.8% were resistant ceftriaxone. Among 22 E. coli isolates recovered from MacConkey agar with ciprofloxacin, 77.3% and 54.5% were resistant to nalidixic acid and ciprofloxacin, respectively. Sixteen Salmonella were isolated and only one demonstrated any resistance (i.e., single resistance to streptomycin). Among E. coli isolates not susceptible to ceftriaxone, an AmpC phenotype was more common than an ESBL phenotype (29 versus 10 isolates, respectively). Whole genome sequencing showed that phenotypic profiles of antibiotic resistance detected were generally substantiated by genotypic profiles. The tested protocol is suited to detecting and estimating prevalence of antimicrobial resistance in bacteria isolated from food animal feces in resource-limited laboratories in the developing world.


Subject(s)
Dairying , Drug Resistance, Microbial , Escherichia coli/isolation & purification , Feces/microbiology , Salmonella/isolation & purification , Animals , Cattle , Escherichia coli/drug effects , Microbial Sensitivity Tests , Salmonella/drug effects
2.
Animals (Basel) ; 11(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916794

ABSTRACT

In Rwanda, information on antibiotic resistance in food animals is scarce. This study was conducted to detect and phenotypically characterize antibiotic-resistant Escherichia coli and Salmonella in feces of cattle, goats, pigs, and poultry in the East province of Rwanda. We isolated non-type-specific (NTS) E. coli and Salmonella using plain culture media. In addition, we used MacConkey agar media supplemented with cefotaxime at 1.0 µg/mL and ciprofloxacin at 0.5 µg/mL to increase the probability of detecting E. coli with low susceptibility to third-generation cephalosporins and quinolones, respectively. Antibiotic susceptibility testing was performed using the disk diffusion test. Among 540 NTS E. coli isolates, resistance to tetracycline was the most frequently observed (35.6%), followed by resistance to ampicillin (19.6%) and streptomycin (16.5%). Percentages of NTS E. coli resistant to all three antibiotics and percentages of multidrug-resistant strains were higher in isolates from poultry. All isolated Salmonella were susceptible to all antibiotics. The sample-level prevalence for resistance to third-generation cephalosporins was estimated at 35.6% with all third-generation cephalosporin-resistant E. coli, expressing an extended-spectrum beta-lactamase phenotype. The sample-level prevalence for quinolone resistance was estimated at 48.3%. These results provided a baseline for future research and the development of integrated surveillance initiatives.

SELECTION OF CITATIONS
SEARCH DETAIL
...