Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(7)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37508349

ABSTRACT

This article focuses on the qualitative analysis of complex dynamics arising in a few mathematical models in neuroscience context. We first discuss the dynamics arising in the three-dimensional FitzHugh-Rinzel (FHR) model and then illustrate those arising in a class of non-homogeneous FitzHugh-Nagumo (Nh-FHN) reaction-diffusion systems. FHR and Nh-FHN models can be used to generate relevant complex dynamics and wave-propagation phenomena in neuroscience context. Such complex dynamics include canards, mixed-mode oscillations (MMOs), Hopf-bifurcations and their spatially extended counterpart. Our article highlights original methods to characterize these complex dynamics and how they emerge in ordinary differential equations and spatially extended models.

2.
Sci Rep ; 13(1): 8215, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37217514

ABSTRACT

The diverse excitabilities of cells often produce various spiking-bursting oscillations that are found in the neural system. We establish the ability of a fractional-order excitable neuron model with Caputo's fractional derivative to analyze the effects of its dynamics on the spike train features observed in our results. The significance of this generalization relies on a theoretical framework of the model in which memory and hereditary properties are considered. Employing the fractional exponent, we first provide information about the variations in electrical activities. We deal with the 2D class I and class II excitable Morris-Lecar (M-L) neuron models that show the alternation of spiking and bursting features including MMOs & MMBOs of an uncoupled fractional-order neuron. We then extend the study with the 3D slow-fast M-L model in the fractional domain. The considered approach establishes a way to describe various characteristics similarities between fractional-order and classical integer-order dynamics. Using the stability and bifurcation analysis, we discuss different parameter spaces where the quiescent state emerges in uncoupled neurons. We show the characteristics consistent with the analytical results. Next, the Erdös-Rényi network of desynchronized mixed neurons (oscillatory and excitable) is constructed that is coupled through membrane voltage. It can generate complex firing activities where quiescent neurons start to fire. Furthermore, we have shown that increasing coupling can create cluster synchronization, and eventually it can enable the network to fire in unison. Based on cluster synchronization, we develop a reduced-order model which can capture the activities of the entire network. Our results reveal that the effect of fractional-order depends on the synaptic connectivity and the memory trace of the system. Additionally, the dynamics captures spike frequency adaptation and spike latency that occur over multiple timescales as the effects of fractional derivative, which has been observed in neural computation.


Subject(s)
Electricity , Neurons , Action Potentials/physiology , Neurons/physiology , Models, Neurological
3.
Chaos ; 32(8): 083121, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36049912

ABSTRACT

In this article, we report on the generation and propagation of traveling pulses in a homogeneous network of diffusively coupled, excitable, slow-fast dynamical neurons. The spatially extended system is modeled using the nearest neighbor coupling theory, in which the diffusion part measures the spatial distribution of coupling topology. We derive analytically the conditions for traveling wave profiles that allow the construction of the shape of traveling nerve impulses. The analytical and numerical results are used to explore the nature of propagating pulses. The symmetric or asymmetric nature of traveling pulses is characterized, and the wave velocity is derived as a function of system parameters. Moreover, we present our results for an extended excitable medium by considering a slow-fast biophysical model with a homogeneous, diffusive coupling that can exhibit various traveling pulses. The appearance of series of pulses is an interesting phenomenon from biophysical and dynamical perspective. Varying the perturbation and coupling parameters, we observe the propagation of activities with various amplitude modulations and transition phases of different wave profiles that affect the speed of pulses in certain parameter regimes. We observe different types of traveling pulses, such as envelope solitons and multi-bump solutions, and show how system parameters and coupling play a major role in the formation of different traveling pulses. Finally, we obtain the conditions for stable and unstable plane waves.


Subject(s)
Models, Neurological , Neurons , Diffusion , Neurons/physiology
4.
Nonlinear Dyn ; 109(1): 19-32, 2022.
Article in English | MEDLINE | ID: mdl-35340759

ABSTRACT

In this article, we model and study the spread of COVID-19 in Germany, Japan, India and highly impacted states in India, i.e., in Delhi, Maharashtra, West Bengal, Kerala and Karnataka. We consider recorded data published in Worldometers and COVID-19 India websites from April 2020 to July 2021, including periods of interest where these countries and states were hit severely by the pandemic. Our methodology is based on the classic susceptible-infected-removed (SIR) model and can track the evolution of infections in communities, i.e., in countries, states or groups of individuals, where we (a) allow for the susceptible and infected populations to be reset at times where surges, outbreaks or secondary waves appear in the recorded data sets, (b) consider the parameters in the SIR model that represent the effective transmission and recovery rates to be functions of time and (c) estimate the number of deaths by combining the model solutions with the recorded data sets to approximate them between consecutive surges, outbreaks or secondary waves, providing a more accurate estimate. We report on the status of the current infections in these countries and states, and the infections and deaths in India and Japan. Our model can adapt to the recorded data and can be used to explain them and importantly, to forecast the number of infected, recovered, removed and dead individuals, as well as it can estimate the effective infection and recovery rates as functions of time, assuming an outbreak occurs at a given time. The latter information can be used to forecast the future basic reproduction number and together with the forecast on the number of infected and dead individuals, our approach can further be used to suggest the implementation of intervention strategies and mitigation policies to keep at bay the number of infected and dead individuals. This, in conjunction with the implementation of vaccination programs worldwide, can help reduce significantly the impact of the spread around the world and improve the wellbeing of people.

5.
Phys Rev E ; 105(1-1): 014215, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35193192

ABSTRACT

In the evolutionary dynamics of a rock-paper-scissor model, the effect of natural death plays a major role in determining the fate of the system. Coexistence, being an unstable fixed point of the model, becomes very sensitive toward this parameter. In order to study the effect of mobility in such a system which has explicit dependence on mortality, we perform Monte Carlo simulation on a two-dimensional lattice having three cyclically competing species. The spatiotemporal dynamics has been studied along with the two-site correlation function. Spatial distribution exhibits emergence of spiral patterns in the presence of mobility. It reveals that the joint effect of death rate and mobility (diffusion) leads to new coexistence and extinction scenarios.

6.
Chaos ; 31(10): 103122, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34717324

ABSTRACT

In this paper, we study an excitable, biophysical system that supports wave propagation of nerve impulses. We consider a slow-fast, FitzHugh-Rinzel neuron model where only the membrane voltage interacts diffusively, giving rise to the formation of spatiotemporal patterns. We focus on local, nonlinear excitations and diverse neural responses in an excitable one- and two-dimensional configuration of diffusively coupled FitzHugh-Rinzel neurons. The study of the emerging spatiotemporal patterns is essential in understanding the working mechanism in different brain areas. We derive analytically the coefficients of the amplitude equations in the vicinity of Hopf bifurcations and characterize various patterns, including spirals exhibiting complex geometric substructures. Furthermore, we derive analytically the condition for the development of antispirals in the neighborhood of the bifurcation point. The emergence of broken target waves can be observed to form spiral-like profiles. The spatial dynamics of the excitable system exhibits two- and multi-arm spirals for small diffusive couplings. Our results reveal a multitude of neural excitabilities and possible conditions for the emergence of spiral-wave formation. Finally, we show that the coupled excitable systems with different firing characteristics participate in a collective behavior that may contribute significantly to irregular neural dynamics.


Subject(s)
Models, Neurological , Neurons , Action Potentials , Brain , Diffusion
7.
Chaos Solitons Fractals ; 139: 110298, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32982084

ABSTRACT

In this paper, a susceptible-infected-removed (SIR) model has been used to track the evolution of the spread of COVID-19 in four countries of interest. In particular, the epidemic model, that depends on some basic characteristics, has been applied to model the evolution of the disease in Italy, India, South Korea and Iran. The economic, social and health consequences of the spread of the virus have been cataclysmic. Hence, it is imperative that mathematical models can be developed and used to compare published datasets with model predictions. The predictions estimated from the presented methodology can be used in both the qualitative and quantitative analysis of the spread. They give an insight into the spread of the virus that the published data alone cannot, by updating them and the model on a daily basis. We show that by doing so, it is possible to detect the early onset of secondary spikes in infections or the development of secondary waves. We considered data from March to August, 2020, when different communities were affected severely and demonstrate predictions depending on the model's parameters related to the spread of COVID-19 until the end of December, 2020. By comparing the published data with model results, we conclude that in this way, it may be possible to reflect better the success or failure of the adequate measures implemented by governments and authorities to mitigate and control the current pandemic.

8.
Chaos Solitons Fractals ; 139: 110057, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32834610

ABSTRACT

In this paper, we study the effectiveness of the modelling approach on the pandemic due to the spreading of the novel COVID-19 disease and develop a susceptible-infected-removed (SIR) model that provides a theoretical framework to investigate its spread within a community. Here, the model is based upon the well-known susceptible-infected-removed (SIR) model with the difference that a total population is not defined or kept constant per se and the number of susceptible individuals does not decline monotonically. To the contrary, as we show herein, it can be increased in surge periods! In particular, we investigate the time evolution of different populations and monitor diverse significant parameters for the spread of the disease in various communities, represented by China, South Korea, India, Australia, USA, Italy and the state of Texas in the USA. The SIR model can provide us with insights and predictions of the spread of the virus in communities that the recorded data alone cannot. Our work shows the importance of modelling the spread of COVID-19 by the SIR model that we propose here, as it can help to assess the impact of the disease by offering valuable predictions. Our analysis takes into account data from January to June, 2020, the period that contains the data before and during the implementation of strict and control measures. We propose predictions on various parameters related to the spread of COVID-19 and on the number of susceptible, infected and removed populations until September 2020. By comparing the recorded data with the data from our modelling approaches, we deduce that the spread of COVID-19 can be under control in all communities considered, if proper restrictions and strong policies are implemented to control the infection rates early from the spread of the disease.

9.
Front Comput Neurosci ; 14: 49, 2020.
Article in English | MEDLINE | ID: mdl-32581757

ABSTRACT

In this paper, we focus on the emergence of diverse neuronal oscillations arising in a mixed population of neurons with different excitability properties. These properties produce mixed mode oscillations (MMOs) characterized by the combination of large amplitudes and alternate subthreshold or small amplitude oscillations. Considering the biophysically plausible, Izhikevich neuron model, we demonstrate that various MMOs, including MMBOs (mixed mode bursting oscillations) and synchronized tonic spiking appear in a randomly connected network of neurons, where a fraction of them is in a quiescent (silent) state and the rest in self-oscillatory (firing) states. We show that MMOs and other patterns of neural activity depend on the number of oscillatory neighbors of quiescent nodes and on electrical coupling strengths. Our results are verified by constructing a reduced-order network model and supported by systematic bifurcation diagrams as well as for a small-world network. Our results suggest that, for weak couplings, MMOs appear due to the de-synchronization of a large number of quiescent neurons in the networks. The quiescent neurons together with the firing neurons produce high frequency oscillations and bursting activity. The overarching goal is to uncover a favorable network architecture and suitable parameter spaces where Izhikevich model neurons generate diverse responses ranging from MMOs to tonic spiking.

10.
J R Soc Interface ; 17(167): 20190859, 2020 06.
Article in English | MEDLINE | ID: mdl-32574543

ABSTRACT

Excitable cells often produce different oscillatory activities that help us to understand the transmitting and processing of signals in the neural system. The diverse excitabilities of an individual neuron can be reproduced by a fractional-order biophysical model that preserves several previous memory effects. However, it is not completely clear to what extent the fractional-order dynamics changes the firing properties of excitable cells. In this article, we investigate the alternation of spiking and bursting phenomena of an uncoupled and coupled fractional leech-heart (L-H) neurons. We show that a complete graph of heterogeneous de-synchronized neurons in the backdrop of diverse memory settings (a mixture of integer and fractional exponents) can eventually lead to bursting with the formation of cluster synchronization over a certain threshold of coupling strength, however, the uncoupled L-H neurons cannot reveal bursting dynamics. Using the stability analysis in fractional domain, we demarcate the parameter space where the quiescent or steady-state emerges in uncoupled L-H neuron. Finally, a reduced-order model is introduced to capture the activities of the large network of fractional-order model neurons.


Subject(s)
Models, Neurological , Neurons , Action Potentials , Biophysics
11.
Sci Rep ; 9(1): 15721, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673009

ABSTRACT

Fractional-order dynamics of excitable systems can be physically described as a memory dependent phenomenon. It can produce diverse and fascinating oscillatory patterns for certain types of neuron models. To address these characteristics, we consider a nonlinear fast-slow FitzHugh-Rinzel (FH-R) model that exhibits elliptic bursting at a fixed set of parameters with a constant input current. The generalization of this classical order model provides a wide range of neuronal responses (regular spiking, fast-spiking, bursting, mixed-mode oscillations, etc.) in understanding the single neuron dynamics. So far, it is not completely understood to what extent the fractional-order dynamics may redesign the firing properties of excitable systems. We investigate how the classical order system changes its complex dynamics and how the bursting changes to different oscillations with stability and bifurcation analysis depending on the fractional exponent (0 < α ≤ 1). This occurs due to the memory trace of the fractional-order dynamics. The firing frequency of the fractional-order FH-R model is less than the classical order model, although the first spike latency exists there. Further, we investigate the responses of coupled FH-R neurons with small coupling strengths that synchronize at specific fractional-orders. The interesting dynamical characteristics suggest various neurocomputational features that can be induced in this fractional-order system which enriches the functional neuronal mechanisms.

12.
Cogn Neurodyn ; 13(4): 393-407, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31354884

ABSTRACT

Electrical activities of excitable cells produce diverse spiking-bursting patterns. The dynamics of the neuronal responses can be changed due to the variations of ionic concentrations between outside and inside the cell membrane. We investigate such type of spiking-bursting patterns under the effect of an electromagnetic induction on an excitable neuron model. The effect of electromagnetic induction across the membrane potential can be considered to analyze the collective behavior for signal processing. The paper addresses the issue of the electromagnetic flow on a modified Hindmarsh-Rose model (H-R) which preserves biophysical neurocomputational properties of a class of neuron models. The different types of firing activities such as square wave bursting, chattering, fast spiking, periodic spiking, mixed-mode oscillations etc. can be observed using different injected current stimulus. The improved version of the model includes more parameter sets and the multiple electrical activities are exhibited in different parameter regimes. We perform the bifurcation analysis analytically and numerically with respect to the key parameters which reveals the properties of the fast-slow system for neuronal responses. The firing activities can be suppressed/enhanced using the different external stimulus current and by allowing a noise induced current. To study the electrical activities of neural computation, the improved neuron model is suitable for further investigation.

13.
Phys Rev E ; 99(4-1): 042307, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31108709

ABSTRACT

We study the spatiotemporal dynamics of a conductance-based neuronal cable. The processes of one-dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage. A 2D Morris-Lecar (ML) model is introduced to investigate the nonlinear responses of an excitable conductance-based neuronal cable. We explore the parameter space of the uncoupled ML model and, based on the bifurcation diagram (as a function of stimulus current), we analyze the 1D diffusion dynamics in three regimes: phasic spiking, coexistence states (tonic spiking and phasic spiking exist together), and a quiescent state. We show (depending on parameters) that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, we explore a 2D diffusion acting on the membrane voltage, where striped and hexagonlike patterns can be observed. To validate our numerical results and check the stability of the existing patterns generated by 2D diffusion, we use amplitude equations based on multiple-scale analysis. We incorporate 1D diffusion in an extended 3D version of the ML model, in which irregular bursting emerges for a certain diffusion strength. The generated patterns may have potential applications in nonlinear neuronal responses and signal transmission.

14.
Chaos ; 28(11): 113104, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501216

ABSTRACT

We examine the dynamics of a spatially extended excitable neuron model between phase state and stable/unstable equilibrium point depending on the parameter regimes. The solitary wave profiles in the excitable medium are characterized by an improved Hindmarsh-Rose (H-R) spiking-bursting neuron model with an injected decaying current function. Linear stability and the nature of deterministic system dynamics are analyzed. Further investigation for the existence of wave using the reaction-diffusion H-R system and the criteria for diffusion-driven instabilities are performed. An approximation method is introduced to analyze traveling wave profiles for the oscillatory neuron model that allows the explicit analytical treatment of both the speed equations and shape of the traveling wave solution. The solitary wave profiles exhibited by the system are explored. The analytical expression for the solution scheme is validated with good accuracy in a wide range of the biophysical parameters of the system. The traveling wave fronts and speed equations control the variations of the information transmission, and the speed of signal transmission may be affected by the injection of certain drugs.


Subject(s)
Models, Neurological , Neurons/metabolism , Synaptic Transmission/physiology , Animals , Humans
15.
Opt Express ; 26(4): 3926-3931, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-29475249

ABSTRACT

We introduce intermediate-plane holography, which substantially improves the ability of holographic trapping systems to project propagation-invariant modes of light using phase-only diffractive optical elements. Translating the mode-forming hologram to an intermediate plane in the optical train can reduce the need to encode amplitude variations in the field, and therefore complements well-established techniques for encoding complex-valued transfer functions into phase-only holograms. Compared to standard holographic trapping implementations, intermediate-plane holograms greatly improve diffraction efficiency and mode purity of propagation-invariant modes, and so increase their useful non-diffracting range. We demonstrate this technique through experimental realizations of accelerating modes and long-range tractor beams.

16.
Neural Netw ; 93: 110-125, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28575735

ABSTRACT

Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing.


Subject(s)
Action Potentials , Memory, Long-Term , Models, Neurological , Action Potentials/physiology , Adaptation, Physiological/physiology , Memory, Long-Term/physiology , Neurons/physiology , Pyramidal Cells/physiology
17.
Soft Matter ; 12(23): 5077-80, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27198612

ABSTRACT

We propose a new method for quantifying shape asymmetry on the mesoscopic scale. The method takes advantage of the intrinsic coupling between rotational and translational Brownian motion (RBM and TBM, respectively) which happens in the case of asymmetric particles. We determine the coupling by measuring different correlation functions of the RBM and TBM for single, morphologically different, weakly trapped red blood cells in optical tweezers. The cells have different degrees of asymmetry that are controllably produced by varying the hypertonicity of their aqueous environment. We demonstrate a clear difference in the nature of the correlation functions both qualitatively and quantitatively for three types of cells having a varying degree of asymmetry. This method can have a variety of applications ranging from early stage disease diagnosis to quality control in microfabrication.

18.
Opt Express ; 23(6): 8021-8, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25837140

ABSTRACT

We induce spontaneous motion that is both directed and complex in micron-sized asymmetric Brownian particles in a spherically aberrated optical trap to generate microswimmers. The aberrated optical trap is prepared in a slightly modified optical tweezers configuration where we use a refractive index mismatched cover slip leading to the formation of an annular intensity distribution near the trap focal plane. Asymmetric scattering from a micro-particle trapped in this annular trap gives rise to a net tangential force on the particle causing it to revolve spontaneously in the intensity ring. The rate of revolution can be controlled from sub-Hz to a few Hz by changing the intensity of the trapping light. Theoretical simulations performed using finite-difference time-domain method verify the experimental observations. We also experimentally demonstrate simultaneous spin and revolution of a micro-swimmer which shows that complex motion can be achieved by designing a suitable shape of a micro-swimmer in the optical potential.

19.
Sci Rep ; 4: 6902, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25376602

ABSTRACT

The accuracy of axonal pathfinding and the formation of functional neural circuitry are crucial for an organism to process, store, and retrieve information from internal networks as well as from the environment. Aberrations in axonal migration is believed to lead to loop formation and self-fasciculation, which can lead to highly dysfunctional neural circuitry and therefore self-avoidance of axons is proposed to be the regulatory mechanism for control of synaptogenesis. Here, we report the application of a newly developed non-contact optical method using a weakly-focused, near infrared laser beam for highly efficient axonal guidance, and demonstrate the formation of axonal loops in cortical neurons, which demonstrate that cortical neurons can self-fasciculate in contrast to self-avoidance. The ability of light for axonal nano-loop formation opens up new avenues for the construction of complex neural circuitry, and non-invasive guidance of neurons at long working distances for restoration of impaired neural connections and functions.


Subject(s)
Axons/ultrastructure , Cerebral Cortex/embryology , Fasciculation/embryology , Nerve Net/embryology , Photons , Animals , Axons/radiation effects , Cerebral Cortex/radiation effects , Cerebral Cortex/ultrastructure , Embryo, Mammalian , Infrared Rays , Kinetics , Lasers , Nerve Net/radiation effects , Nerve Net/ultrastructure , Neurogenesis , Photic Stimulation , Primary Cell Culture , Rats
20.
Sci Rep ; 4: 6457, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25283077

ABSTRACT

The precision of axonal pathfinding and the accurate formation of functional neural circuitry are crucial for an organism during development as well as during adult central and peripheral nerve regeneration. While chemical cues are believed to be primarily responsible for axonal pathfinding, we hypothesize that forces due to localized fluid flow may directly affect neuronal guidance during early organ development. Here, we report direct evidence of fluid flow influencing axonal migration, producing turning angles of up to 90°. Microfluidic flow simulations indicate that an axon may experience significant bending force due to cross-flow, which may contribute to the observed axonal turning. This method of flow-based guidance was successfully used to fasciculate one advancing axon onto another, showcasing the potential of this technique to be used for the formation of in vitro neuronal circuits.


Subject(s)
Axons/physiology , Cell Movement/physiology , Goldfish/physiology , Microfluidics , Neurogenesis/physiology , Animals , Cells, Cultured , Growth Cones , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...