Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
World J Microbiol Biotechnol ; 40(6): 168, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630156

ABSTRACT

Obesity is a growing epidemic worldwide. Several pharmacologic drugs are being used to treat obesity but these medicines exhibit side effects. To find out the alternatives of these drugs, we aimed to assess the probiotic properties and anti-obesity potentiality of a lactic acid bacterium E2_MCCKT, isolated from a traditional fermented rice beverage, haria. Based on the 16S rRNA sequencing, the bacterium was identified as Lactiplantibacillus plantarum E2_MCCKT. The bacterium exhibited in vitro probiotic activity in terms of high survivability in an acidic environment and 2% bile salt, moderate auto-aggregation, and hydrophobicity. Later, E2_MCCKT was applied to obese mice to prove its anti-obesity potentiality. Adult male mice (15.39 ± 0.19 g) were randomly divided into three groups (n = 5) according to the type of diet: normal diet (ND), high-fat diet (HFD), and HFD supplemented with E2_MCCKT (HFT). After four weeks of bacterial treatment on the obese mice, a significant reduction of body weight, triglyceride, and cholesterol levels, whereas, improvements in serum glucose levels were observed. The bacterial therapy led to mRNA up-regulation of lipolytic transcription factors such as peroxisome proliferator-activated receptor-α which may increase the expression of fatty acid oxidation-related genes such as acyl-CoA oxidase and carnitine palmitoyl-transferase-1. Concomitantly, both adipocytogenesis and fatty acid synthesis were arrested as reflected by the down-regulation of sterol-regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase genes. In protein expression study, E2_MCCKT significantly increased IL-10 expression while decreasing pro-inflammatory cytokine (IL-1Ra and TNF-α) expression. In conclusion, the probiotic Lp. plantarum E2_MCCKT might have significant anti-obesity effects on mice.


Subject(s)
Diet, High-Fat , Obesity , Male , Animals , Mice , Diet, High-Fat/adverse effects , Mice, Obese , RNA, Ribosomal, 16S/genetics , Fatty Acids
2.
J Appl Biomed ; 22(1): 49-58, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38505970

ABSTRACT

We have extracted and characterized Phasa fish (Setipinna phasa) oil for the first time to evaluate the anti-obesity and related anti-inflammatory effects on obese mice. Inbred male albino BALB/c mice were segregated into three categories: control (C), Obese control group (OC), and Phasa fish oil treated group (TX). To establish the potentiality of Setipinna phasa oil for its anti-obesity and anti-inflammatory properties, it was extracted and characterized using GC-MS method. To evaluate the anti-obesity effect, different parameters were considered, such as body weight, lipid composition, obesity, and obesity associated inflammation. The physicochemical characteristics of Phasa fish oil revealed that the oil quality was good because acid value, peroxide value, p-anisidine value, Totox value, refractive index, and saponification value were within the standard value range. The GC-MS study explored the presence of fatty acids beneficial to health such as Hexadec-9-enoic acid; Octadec-11-enoic acid; EPA, DHA, Methyl Linolenate, etc. The application of Setipinna phasa oil on the treated mice group acutely lowered body weight and serum lipid profile compared to the obese group. In connection with this, leptin, FAS, and pro-inflammatory cytokines TNF-α genes expression were downregulated in the treated group compared to the obese group. The Phasa oil treated group had an elevated expression of PPAR-α, adiponectin, LPL gene, and anti-inflammatory markers IL-10 and IL-1Ra compared to the obese group. This study suggests that Phasa fish oil, enriched with essential fatty acid, might be used as an anti-obesity and anti-inflammatory supplement.


Subject(s)
Diet, High-Fat , Obesity , Male , Mice , Animals , Diet, High-Fat/adverse effects , Mice, Inbred BALB C , Obesity/drug therapy , Obesity/metabolism , Fish Oils/pharmacology , Fish Oils/therapeutic use , Body Weight , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
3.
Nutr Neurosci ; 27(3): 271-288, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36947578

ABSTRACT

OBJECTIVES: In this study mice were fed a high-fat diet for 12 weeks to establish diet-induced obesity and syringic acid (SA) was assessed for anti-obese, neuroprotective, and neurogenesis. METHOD: Animals were given HFD for 12 weeks to measure metabolic characteristics and then put through the Barns-maze and T-maze tests to measure memory. Additionally, the physiology of the blood-brain barrier, oxidative stress parameters, the expression of inflammatory genes, neurogenesis, and histopathology was evaluated in the brain. RESULT: DIO raised body weight, BMI, and other metabolic parameters after 12 weeks of overfeeding. A reduced spontaneous alternation in behavior (working memory, reference memory, and total time to complete a task), decreased enzymatic and non-enzymatic antioxidants, oxidative biomarkers, increased neurogenesis, and impaired blood-brain barrier were all seen in DIO mice. SA (50 mg/kg) treatment of DIO mice (4 weeks after 8 weeks of HFD feeding) reduced diet-induced changes in lipid parameters associated with obesity, hepatological parameters, memory, blood-brain barrier, oxidative stress, neuroinflammation, and neurogenesis. SA also reduced the impact of malondialdehyde and enhanced the effects of antioxidants such as glutathione, superoxide dismutase (SOD), and total thiol (MDA). Syringic acid improved neurogenesis, cognition, and the blood-brain barrier while reducing neurodegeneration in the hippocampal area. DISCUSSION: According to the results of the study, syringic acid therapy prevented neurodegeneration, oxidative stress, DIO, and memory loss. Syringic acid administration may be a useful treatment for obesity, memory loss, and neurogenesis, but more research and clinical testing is needed.


Subject(s)
Gallic Acid/analogs & derivatives , Obesity , Overweight , Mice , Animals , Obesity/etiology , Obesity/prevention & control , Obesity/drug therapy , Brain/metabolism , Antioxidants/pharmacology , Diet, High-Fat/adverse effects , Oxidative Stress , Memory Disorders , Neurogenesis/physiology
4.
Virology ; 588: 109887, 2023 11.
Article in English | MEDLINE | ID: mdl-37774603

ABSTRACT

Aeromonas hydrophila, a Gram-negative pathogenic bacterium, is responsible for huge economic losses in aquaculture. In this study, we evaluated the efficacy of bacteriophage AHPMCC7 which was isolated by using A. hydrophila MTCC 1739 as a host. This bacteriophage exhibited 10 min latent period and burst size was 275. In liquid culture, bacteriophage AHPMCC7 could completely lyse A. hydrophila MTCC 1739 after 2 h. AHPMCC7 genome was 42,277 bp long with 58.9% G + C content. The genome consisted of 48 CDSs and no tRNA. The comparative genomic analyses clearly implied that AHPMCC7 might represent a novel species of the genus Aphunavirus under Autographiviridae family. Bacteriophage AHPMCC7 could survive at broad pH (3-10), temperature (4-37 °C), and salinity (0-40 ppt). In aquarium trial, AHPMCC7 could control A. hydrophila MTCC 1739 without affecting the survivability of Litopenaeus vannamei. Clearly, the bacteriophage AHPMCC7 might be used in shrimp aquaculture as a biocontrol agent.


Subject(s)
Aeromonas , Bacteriophages , Caudovirales , Aeromonas/genetics , Aeromonas hydrophila/genetics , Caudovirales/genetics , Sequence Analysis
5.
Int J Biol Macromol ; 244: 125389, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37331539

ABSTRACT

Commercial chitosan manufacturing process relies on strong chemical treatment on chitin that generates chitosan with undesirable properties and leads to environmental pollution. To overcome the adverse consequences, enzymatic chitosan preparation from chitin was undertaken in the current study. A potent chitin deacetylase (CDA) producing bacterial strain was screened and subsequently identified as Alcaligens faecalis CS4. After optimization 40.69 U/mL of CDA production was achieved. By treating the organically extracted chitin with partially purified CDA chitosan yield of 19.04 % was attained having 71 % solubility, 74.9 % degree of deacetylation, 21.16 % crystallinity index, 246.4 kDa molecular weight and 298 °C highest-decomposition temperature. FTIR and XRD analysis revealed characteristics peaks respectively within 870-3425 cm-1 wavenumber and 10°-20°, for enzymatically and chemically extracted (commercial) chitosan that endorses their structural similarity which validated through electron microscopic study. At 10 mg/mL chitosan concentration 65.49 % DPPH radical scavenging activity endorsed its antioxidant potential. Minimum inhibitory concentration of chitosan was 0.675, 1.75, 0.33 and 0.75 mg/mL for Streptococcus mutans, Enterococcus faecalis, Escherichia coli and Vibrio sp., respectively. Mucoadhesiveness and cholesterol binding properties were also exhibited by extracted chitosan. The present study opens a new vista for eco-friendly extraction of chitosan from chitin that is proficient and sustainable in environmental perspective.


Subject(s)
Chitosan , Chitosan/chemistry , Chitin/chemistry , Amidohydrolases/metabolism , Bacteria/metabolism
6.
Bioresour Technol ; 376: 128910, 2023 May.
Article in English | MEDLINE | ID: mdl-36940875

ABSTRACT

Glutathione, a tri-peptide (glutamate-cysteine-glycine) with the thiol group (-SH), is most efficient antioxidative agent in eukaryotic cells. The present study aimed to isolate an efficient probiotic bacterium having the potential to produce glutathione. The isolated strain Bacillus amyloliquefaciens KMH10 showed antioxidative activity (77.7 ± 2.56) and several other essential probiotic attributes. Banana peel, a waste of banana fruit, is chiefly composed of hemicellulose with various minerals and amino acids. A consortium of lignocellulolytic enzyme was used for the saccharifying banana peel to produce 65.71 g/L sugar to support the optimal glutathione production of 181 ± 4.56 mg/L; i.e., 1.6 folds higher than the control. So, the studied probiotic bacteria could be an effective resource for glutathione; therefore, the stain could be used as natural therapeutics for the prevention/treatment of different inflammation-related gastric ailments and as an effective producer of glutathione using valorized banana waste that has excellent industrial relevance.


Subject(s)
Bacillus amyloliquefaciens , Musa , Probiotics , Musa/chemistry , Antioxidants/chemistry , Glutathione
7.
J Trace Elem Med Biol ; 77: 127133, 2023 May.
Article in English | MEDLINE | ID: mdl-36638706

ABSTRACT

BACKGROUND: Chronic fluoride toxicity induces oxidative strain and lipid peroxidation and imparts deleterious effects on human metabolic organs. AIM: The present study aimed to expose the defensive impact of ferulic acid against sodium fluoride (NaF) induced hepatorenal dysfunction at the biochemical and antioxidative systems. METHODS: In-vivo. Rats were arbitrarily separated into five groups as control, sodium fluoride-treated (200 ppm kg -1), vitamin C -as a positive control, and FA co-administered groups with 10 mg kg -1 and 20 mg kg -1 body weight for 56 days. In the present investigation, we measured antioxidant enzymes, superoxide dismutase, catalase, and lactate dehydrogenase by electrozymographic and spectrophotometric methods. Biochemical assessment of TBARS, conjugated diene, and different serum biomarkers was done for liver and kidney functionality tests. In-silico. An in-silico study was conducted through a molecular docking experiment to evaluate the binding potentiality of FA by employing AutoDock Vina [version 1.5.6] to overcome the abnormality in the activities of catalase, and superoxide dismutase in NaF promoted toxicity of hepatorenal system. In-vitro. An in vitro biochemical experiment was conducted to support the in-silico study. RESULTS: Superoxide dismutase and catalase were decreased in the intoxicated rat. Ferulic acid (FA) as an antioxidant remarkably defended the NaF-mediated deterioration of the antioxidative status in the hepatorenal system, lowering lipid peroxidation products, malondialdehyde, and conjugated diene. Serum biomarkers, ALT, AST, ALP, urea, and creatinine increased in the intoxicated group than in control. Ferulic acid significantly neutralized the ill effects of NaF on serum lipid profile. In-silico analysis hypothesized the strong interaction of FA with the active side of catalase and superoxide dismutase that prevented the binding of NaF at the active site of these mentioned enzymes and this was further validated by in-vitro assay. CONCLUSION: However, FA modulates free radical generation and protected these metabolic organs against sodium fluoride-induced injury.


Subject(s)
Antioxidants , Fluorides , Humans , Rats , Animals , Antioxidants/metabolism , Catalase/metabolism , Fluorides/pharmacology , Sodium Fluoride/pharmacology , Molecular Docking Simulation , Glutathione/metabolism , Rats, Wistar , Oxidative Stress , Liver/metabolism , Superoxide Dismutase/metabolism , Biomarkers/metabolism , Lipid Peroxidation
8.
World J Microbiol Biotechnol ; 38(11): 203, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35999473

ABSTRACT

With the advent of green chemistry, the use of enzymes in industrial processes serves as an alternative to the conventional chemical catalysts. A high demand for sustainable processes for catalysis has brought a significant attention to hunt for novel enzymes. Among various hydrolases, the α-amylase has a gamut of biotechnological applications owing to its pivotal role in starch-hydrolysis. Industrial demand requires enzymes with thermostability and to ameliorate this crucial property, various methods such as protein engineering, directed evolution and enzyme immobilisation strategies are devised. Besides the traditional culture-dependent approach, metagenome from uncultured bacteria serves as a bountiful resource for novel genes/biocatalysts. Exploring the extreme-niches metagenome, advancements in protein engineering and biotechnology tools encourage the mining of novel α-amylase and its stable variants to tap its robust biotechnological and industrial potential. This review outlines α-amylase and its genetics, its catalytic domain architecture and mechanism of action, and various molecular methods to ameliorate its production. It aims to impart understanding on mechanisms involved in thermostability of α-amylase, cover strategies to screen novel genes from futile habitats and some molecular methods to ameliorate its properties.


Subject(s)
Metagenome , alpha-Amylases , Enzymes, Immobilized/metabolism , Protein Engineering , Starch/chemistry , alpha-Amylases/chemistry
9.
Foods ; 11(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35741908

ABSTRACT

Hydrolysis of olive, rapeseed, linseed, almond, peanut, grape seed and menhaden oils was performed with commercial lipases of Aspergillus niger, Rhizopus oryzae, Rhizopus niveus, Rhizomucor miehei and Candida rugosa. In chromogenic plate tests, olive, rapeseed, peanut and linseed oils degraded well even after 2 h of incubation, and the R. miehei, A. niger and R. oryzae lipases exhibited the highest overall action against the oils. Gas chromatography analysis of vegetable oils hydrolyzed by R. miehei lipase revealed about 1.1 to 38.4-fold increases in the concentrations of palmitic, stearic, oleic, linoleic and α-linolenic acids after the treatment, depending on the fatty acids and the oil. The major polyunsaturated fatty acids produced by R. miehei lipase treatment from menhaden oil were linoleic, α-linolenic, hexadecanedioic, eicosapentaenoic, docosapentaenoic and docosahexaenoic acids, with yields from 12.02 to 52.85 µg/mL reaction mixture. Folin-Ciocalteu and ferric reducing power assays demonstrated improved antioxidant capacity for most tested oils after the lipase treatment in relation to the concentrations of some fatty acids. Some lipase-treated and untreated samples of oils, at 1.25 mg/mL lipid concentration, inhibited the growth of food-contaminating bacteria. The lipid mixtures obtained can be reliable sources of extractable fatty acids with health benefits.

10.
J Agric Food Chem ; 70(25): 7662-7673, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35699309

ABSTRACT

The present study represented an innovative strategy for inactivating the secreted invasins (lignocellulolytic enzymes) of fungal phytopathogens using natural phytochemicals to combat fungal infection to the pulses. A fungal pathogen (Aspergillus niger SKP1) was isolated from the white lentil (Vigna mungo), which has the ability to synthesize different lignocellulolytic enzymes. An in silico docking study elucidated that quercetin, naringin, epigallocatechin gallate, curcumin, and cinnamic acid were the prime efficient phytochemicals to inhibit the activity of fungal invasive enzymes like endoglucanase, endo-1,4-ß-xylanase, and glucoamylase. Considering this observation, extracted phytochemicals in different mixtures were applied to prevent growth of the isolated pathogen under in situ experimental studies. The minimal inhibitory concentrations (MIC50) and minimal fungicidal concentration (MFC50) values of the first mixture (naringenin, epicatechin gallate, and cinnamic acid) and second mixture (quercetin and curcumin) were 170 and 220 mg/L and 320 and 380 mg/L, respectively. The studied phytochemicals were established to be cytosafe when compared to the commercial fungicides. The seeds of the white lentil were subjected to 1 year of long-term storage with the two aforementioned combinatorial phytochemicals. Subsequent morphological and physiological analyses revealed the complete protection of the stored seeds from the fungal infection. The present work has enough potentiality for the storage of pulses using natural preservatives that circumvent the adverse effect of the chemical preservatives on the ecosystem.


Subject(s)
Curcumin , Quercetin , Aspergillus niger , Curcumin/pharmacology , Ecosystem , Phytochemicals/pharmacology , Quercetin/pharmacology
11.
Front Microbiol ; 13: 794503, 2022.
Article in English | MEDLINE | ID: mdl-35607594

ABSTRACT

The present study has been aimed at evaluating the antiobesity, antihyperglycemic, and antidepressive potentials of Asparagus racemosus starter-based rice fermented foods. High-throughput NGS technology has revealed a number of bacterial genera in the prepared fermented rice, such as Lactobacillus (29.44%), Brevundimonas (16.21%), Stenotrophomonas (6.18%), Pseudomonas (3.11%), Bacillus (2.88%), and others (<2%). Eight-week administration of rice fermented food has increased food intake, whole-body weight, organ weight, different fat masses, serum lipid profiles, and histology of liver and adipose tissues in HFD-induced obese mice. In addition, upregulation of fatty acid oxidation and downregulation of adipocytogenesis- and lypogenesis-related genes along with the expression of their regulatory nuclear factors such as PPARα, PPARγ, PPARδ, and SREBP-1c have also been noted. Moreover, fermented food decreases fasting blood glucose level and improves glucose and insulin tolerance as well as the expression of GLUT4 receptor. Antiobesity and antihyperglycemic effects are also supported by the changes in insulin, leptin, and adiponectin hormone levels. The real-time polymerase chain reaction (RT-PCR) and denaturing gradient gel electrophoresis (DGGE) analyses have clearly demonstrated the intense colonization of Bacteroides, Lactobacillus, and Bifidobacterium, as well as the suppressed growth rate of γ- and δ-Proteobacteria and Firmicutes in the gut after fermented food intake. In the intestine, the latter group of microorganisms possibly modulate short-chain fatty acid (SCFA) levels such as acetate, butyrate, and propionate more than twofold. The impairment of memory-learning and anxiety-like obesity-associated cognitive phenotypes is mitigated significantly (p < 0.01) by fermented food as well. Thus, the formulated fermented food could be used as a natural therapeutic to alleviate obesity and its associated psychological and pathophysiological ailments.

12.
Syst Microbiol Biomanuf ; 2(1): 147-156, 2022.
Article in English | MEDLINE | ID: mdl-38624716

ABSTRACT

The popularity of traditional fermented food products is based on their healthiness. The addition of a starter brings consistent, desirable, and predictable food changes with improved nutritive, functional, and sensory qualities. The addition of a mixture of plant residues as a starter or source of microbes is an age-old practice to prepare traditional fermented food and beverages, and most of the reported data on traditional foods were based on the analysis of the final product. The contribution of an individual starter component (plant residue) is not experimentally substantiated for any traditional fermented food, but this data are very essential for the formulation of an effective starter. In this study, Asparagus racemosus, which used as a common ingredient of starter for preparation of rice fermented food in the Indian sub-continent, was used as a starter for the preparation of rice fermented food under laboratory scale, and its microbial and nutrient profile was evaluated. The fermented product was a good source of lactic acid bacteria, Bifidobacterium sp., yeast, etc. The food product was acidic and enriched with lactic acid and acetic acid with titratable acidity of 0.65%. The content of protein, fat, minerals, and vitamins (water-soluble) was considerably improved. Most notably, oligosaccharide (G3-matotriose), unsaturated fatty acids (ω3, ω6, ω7, and ω9), and a pool of essential and non-essential amino acids were enriched in the newly formulated food. Thus, the herbal starter-based rice fermented food would provide important macro- and micronutrients. They could also deliver large numbers of active microorganisms for the sustainability of health. Therefore, the selected plant part conferred its suitability as an effective starter for the preparation of healthier rice-based food products.

13.
Syst Microbiol Biomanuf ; 2(1): 113-129, 2022.
Article in English | MEDLINE | ID: mdl-38624901

ABSTRACT

Cellulose is the utmost plenteous source of biopolymer in our earth, and fungi are the most efficient and ubiquitous organism in degrading the cellulosic biomass by synthesizing cellulases. Tailoring through genetic manipulation has played a substantial role in constructing novel fungal strains towards improved cellulase production of desired traits. However, the traditional methods of genetic manipulation of fungi are time-consuming and tedious. With the availability of the full-genome sequences of several industrially relevant filamentous fungi, CRISPR-CAS (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) technology has come into the focus for the proficient development of manipulated strains of filamentous fungi. This review summarizes the mode of action of cellulases, transcription level regulation for cellulase expression, various traditional strategies of genetic manipulation with CRISPR-CAS technology to develop modified fungal strains for a preferred level of cellulase production, and the futuristic trend in this arena of research.

14.
J Food Sci Technol ; 58(12): 4795-4804, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34629544

ABSTRACT

Probiotic bacteria are now becoming an effective natural medicine for alleviating many non-communicable lifestyle-related diseases. The present study was conducted to evaluate the antioxidant and antitoxicant properties of a foodborne probiotic Bifidobacterium sp. MKK4 and its rice fermented beverage. The extracts of culture broth, whole cells, fermented beverage, and it's heat-inactivated counterparts subjected to in vitro antioxidant/antiradical assays by DPPH, ABTS, and FRAP analysis. Except for heat-inactivated states, all samples exhibited strong antioxidant activity. In the experimental rat model, both Bifidobacterium sp. MKK4 and its rice fermented beverage significantly prevented arsenic toxicity by inducing a higher level of superoxide dismutase (SOD), catalase (CAT), reduced glutathione and preventing lipid peroxidation (LPO) and DNA fragmentation, and transmembrane mitochondrial potential. Besides, the organism supported systematic protection by improving the level of serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, alkaline phosphatase, lactate dehydrogenase, C-reactive protein, urea, creatinine, and uric acid. The inherent antioxidant nature of the isolate can be exploited as an ingredient in functional food and an effective antidote against arsenic toxicity.

15.
Bioprocess Biosyst Eng ; 44(9): 1943-1956, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33956220

ABSTRACT

Chemical extraction of chitin is very hazardous and costly which can be overwhelmed by microbial bioprocessing. In this study, potent protease and lactic acid-producing bacteria were screened and identified as Alcaligens faecalis S3 and Bacillus coagulans L2, respectively. Productions of protease and lactic acid by the respective bacterial strains were optimized. The shell of Litopenaeus vannamei was sequentially treated with the partially purified protease and lactic acid and the treatment conditions were optimized for betterment of chitin yield. Spectral characterization by SEM-EDS, IR, XRD, NMR, XPS and thermal characterization by TG and DTG analysis of the extracted chitin was made and compared with commercial one. It was revealed that both the chitin have similar characteristics. Therefore, it can be articulated that chitin can be extracted from crustacean shells in pure form by microbial bioprocessing which will be a good catch for biorefinary industries for chitin extraction through greener route.


Subject(s)
Alcaligenes faecalis/growth & development , Bacillus coagulans/growth & development , Chitin , Penaeidae/chemistry , Waste Management , Animals , Chitin/chemistry , Chitin/metabolism
16.
Environ Sci Pollut Res Int ; 28(42): 58915-58928, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33660173

ABSTRACT

Crustacean shell waste disposal is considered as biggest problem in seafood processing centers. Incineration and landfilling are the commonest ways of disposal of the waste which causes environmental pollution. Microbial bio-conversion is one of the promising approaches to minimize the wastes by utilizing the same for deriving different value added metabolites. In this perspective, chitinase- and protease-producing bacterial strains were isolated from shrimp culture pond, and the potent isolate was subsequently identified as Alcaligenes faecalis SK10. Fermentative optimization of the production of chitinase (85.42 U/ml), protease (58.57 U/ml), and their catalytic products, viz., N-acetylamino sugar (84 µg/ml) and free amino acids (112 µg/ml), were carried out by utilizing shrimp and crab shell powder as principal substrate. The fermented hydrolysate (FH) was subsequently applied to evaluate its potential to be a candidate fertilizer for the growth of leguminous plant Pisum sativum and Cicer arietinum, and the results were compared with chitin, chitosan, and commercial biofertilizer amended group. The results revealed that FH have paramount potential to improve plants morpho-physiological parameters like stem and root length, chlorophyll, cellular RNA, protein content, and soil physico-chemical parameters like total nitrogen, magnesium, calcium, phosphorus, and potassium significantly (p < 0.05). Moreover, the application of FH also selectively encouraged the growth of free-living nitrogen-fixing bacteria, Rhizobium, phosphate-solubilizing bacteria in the soil by 4.82- and 5.27-, 5.57- and 4.71, and 7.64- and 6.92-fold, respectively, in the rhizosphere of P. sativum and C. arietinum, which collectively is a good sign for an ideal biofertilizer. Co-supplementation of FH with commercial PGPR-biofertilizer significantly influenced the morpho-physiological attributes of plant and physico-chemical and microbial attributes of soil. The study validated proficient and sustainable utilization of fermented hydrolysate of waste crustacean shell as biofertilizer.


Subject(s)
Fertilizers , Nitrogen , Nitrogen/analysis , Rhizosphere , Seafood , Soil
17.
J Food Biochem ; 44(11): e13448, 2020 11.
Article in English | MEDLINE | ID: mdl-32881000

ABSTRACT

In this present investigation, we have extracted and characterized the Tapra fish oil as well as applied it to evaluate anti-obesity potentiality. The Tapra fish oil had 1.14 ± 0.10 mg KOH/g of acid value, 129.8 ± 5.09 mg KOH/g of saponification number, 2.67 ± 0.67 mEq/kg of peroxide value, 121.9 ± 2.14 mg of iodine value, and 17.67 ± 1.45 totox value. Gas Chromatography-Mass Spectrometric analysis clearly revealed the presence of nine different fatty acids. When the fish oil was applied to high-fat diet-induced obese mice, it showed significant reduction of body weight, Body Mass Index, and serum lipid profiles compared to the high-fat diet-induced obese mice. The levels of leptin and TNF-α were moderately reduced in fish oil treated high-fat diet-induced obese mice than control obese mice. In conclusion, the Tapra fish oil was enriched with essential fatty acids and it could be used as an antiobese food supplement. PRACTICAL APPLICATIONS: Considering the adverse effects of drugs used for the treatment of obesity, there is always a need to find out the alternatives. While the anti-obesity potentialities of different sea fish oil have been documented, the same for the Tapra fish (Opisthopterus tardoore) oil has not been studied at all. The extracted Tapra fish oil was found good in quality. Administration of fish oil in the mice exhibited anti-obesity effect in terms of lowering body weight, Body Mass Index, and serum lipid profiles, leptin, and TNF-α in mice model. These findings are fostering new therapeutic approaches to obesity treatment.


Subject(s)
Diet, High-Fat , Fish Oils , Obesity , Animals , Body Weight , Fishes , Leptin , Mice , Obesity/drug therapy
18.
3 Biotech ; 6(1): 70, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28330139

ABSTRACT

Water hyacinth (Eichhornia crassipes) represents a promising candidate for fuel ethanol production in tropical countries because of their high availability and high biomass yield. Bioconversion of such biomass to bioethanol could be wisely managed through proper technological approach. In this work, pretreatment of water hyacinth (10 %, w/v) with dilute sulfuric acid (2 %, v/v) at high temperature and pressure was integrated in the simulation and economic assessment of the process for further enzymatic saccharification was studied. The maximum sugar yield (425.6 mg/g) through enzymatic saccharification was greatly influenced by the solid content (5 %), cellulase load (30 FPU), incubation time (24 h), temperature (50 °C), and pH (5.5) of the saccharifying medium. Central composite design optimized an ethanol production of 13.6 mg/ml though a mixed fermentation by Saccharomyces cerevisiae (MTCC 173) and Zymomonas mobilis (MTCC 2428). Thus the experiment imparts an economic value to water hyacinths that are cleared from choking waterways.

19.
Clin Exp Nephrol ; 19(2): 168-77, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24740592

ABSTRACT

BACKGROUND: Currently kidney disease appears a foremost problem across the world. Acetaminophen is a commonly used antipyretic agent, which in high doses, causes uremia and used for experimentally induction of kidney disease. Bacteriotherapy affords a promising approach to mitigate uremic toxins by ingestion of urease positive bacteria, probiotics and symbiotic able to catabolize uremic solutes within the gut. The present study evaluates the effect of seven commercial symbiotic on kidney disease. METHODS: Fifty-four albino male rats were randomly divided into nine groups. Control group (Group-I) received distilled water interperitoneally for 7 days. Positive control group (Group-II) received 500 mg/kg acetaminophen interperitoneally for 7 days. Commercially available seven symbiotic combinations at a dose of 10(9)cells/day for 3 weeks was administered to the tested groups (Group III-IX) after receiving 500 mg/kg/day acetaminophen interperitoneally for 7 days. Blood, kidney, liver and stool samples were collected after scarification for biochemical tests and DNA fragmentation assay of kidney tissue, kidney histological studies. Limited fecal analysis was conducted. RESULT: Blood urea nitrogen and toxicity indicators were increased, and antioxidant enzymes were decreased in Group-II. Blood urea nitrogen, toxicity indicators, glomerular necrosis, DNA damage of kidney tissue were reduced, and antioxidant enzymes were increased significantly in the treated Groups IV and IX (p < 0.05) in response to Group-II. Number of pathogenic bacteria decreased in synbiotic treated groups than Group I and II. CONCLUSION: The study demonstrated that some of commercial symbiotic combination can reduce the sever effect of kidney disease.


Subject(s)
Feces/microbiology , Kidney Glomerulus/pathology , Synbiotics/administration & dosage , Uremia/drug therapy , Uremia/pathology , Acetaminophen , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Blood Urea Nitrogen , Catalase/metabolism , Creatinine/blood , DNA Fragmentation , Glutathione/metabolism , Kidney Glomerulus/metabolism , Male , Malondialdehyde/metabolism , Necrosis/pathology , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Urea/blood , Uremia/blood , Uremia/chemically induced
20.
Indian J Exp Biol ; 52(11): 1098-105, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25434105

ABSTRACT

At high altitude (HA) hypobaric hypoxic environment manifested several pathophysiological consequences of which gastrointestinal (GI) disorder are very common phenomena. To explore the most possible clue behind this disorder intestinal flora, the major player of the GI functions, were subjected following simulated hypobaric hypoxic treatment in model animal. For this, male albino rats were exposed to 55 kPa (approximately 4872.9 m) air pressure consecutively for 30 days for 8 h/day and its small intestinal microflora, their secreted digestive enzymes and stress induced marker protein were investigated of the luminal epithelia. It was observed that population density of total aerobes significantly decreased, but the quantity of total anaerobes and Escherichia coli increased significantly after 30 days of hypoxic stress. The population density of strict anaerobes like Bifidobacterium sp., Bacteroides sp. and Lactobacillus sp. and obligate anaerobes like Clostridium perfringens and Peptostreptococcus sp. were expanded along with their positive growth direction index (GDI). In relation to the huge multiplication of anaerobes the amount of gas formation as well as content of IgA and IgG increased in duration dependent manner. The activity of some luminal enzymes from microbial origin like a-amylase, gluco-amylase, proteinase, alkaline phosphatase and beta-glucuronidase were also elevated in hypoxic condition. Besides, hypoxia induced in formation of malondialdehyde along with significant attenuation of catalase, glutathione peroxidase, superoxide dismutase activity and lowered GSH/GSSG pool in the intestinal epithelia. Histological study revealed disruption of intestinal epithelial barrier with higher infiltration of lymphocytes in lamina propia and atrophic structure. It can be concluded that hypoxia at HA modified GI microbial imprint and subsequently causes epithelial barrier dysfunction which may relate to the small intestinal dysfunction at HA.


Subject(s)
Acclimatization/physiology , Atmospheric Pressure , Bacteria, Aerobic/isolation & purification , Bacteria, Anaerobic/isolation & purification , Hypoxia/microbiology , Ileum/microbiology , Microbiota/physiology , Altitude , Animals , Atmosphere Exposure Chambers , Bacteria, Aerobic/enzymology , Bacteria, Anaerobic/enzymology , Bacterial Proteins/metabolism , Catalase/analysis , Digestion/physiology , Disease Models, Animal , Enzymes/metabolism , Feces/enzymology , Glutathione/analysis , Hypoxia/etiology , Hypoxia/physiopathology , Ileum/enzymology , Ileum/ultrastructure , Lipid Peroxidation , Male , Random Allocation , Rats , Stress, Physiological/physiology , Superoxide Dismutase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...