Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health Insights ; 17: 11786302231201259, 2023.
Article in English | MEDLINE | ID: mdl-37808962

ABSTRACT

Along with expanding urbanization and industrialization, environmental pollution which negatively affects the surroundings, has been rising quickly. As a result, induces heavy metal contamination which poses a serious threat to living organisms of aquatic and soil ecosystems. Therefore, they are a need to ameliorate the effects cost by cost pollution on the environment. In this review, we explore methods employed to mitigate the effects caused by heavy metals on the environment. Many techniques employed to manage environmental pollution are tedious and very costly, necessitating the use of alternative management strategies to resolve this challenge. In this concept, bioremediation is viewed as a future technique, due to its environmental friendliness and cost-effective measures aligned with sustainable or climate-smart agriculture to manage contaminants in the environment. The technique involves the use of living entities such as bacteria, fungi, and plants to deteriorate toxic substances from the rhizosphere. Currently, bioremediation is thought to be the most practical, dependable, environmentally benign, and long-lasting solution. Although bioremediation involves different techniques, they are still a need to find the most efficient method for removing toxic substances from the environment. This review focuses on the origins of heavy metal pollution, delves into cost-effective and green technological approaches for eliminating heavy metal pollutants from the environment, and discusses the impact of these pollutants on human health.

2.
Plants (Basel) ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38202406

ABSTRACT

The global industrial revolution has led to a substantial rise in heavy metal levels in the environment, posing a serious threat to nature. Plants synthesize phenolic compounds under stressful conditions, which serve as protective agents against oxidative stress. Basilicum polystachyon (L.) Moench is an herbaceous plant of the Lamiaceae family. Some species within this family are recognized for their capacity to remediate sites contaminated with heavy metals. In this study, the effects of mercury (II) chloride and lead (II) nitrate on the in vitro propagation of B. polystachyon were investigated. Shoot tips from in vitro plantlets were cultured in Murashige and Skoog's (MS) media with heavy metals ranging from 1 to 200 µM to induce abiotic stress and enhance the accumulation of phenolic compounds. After three weeks, MS medium with 1 µM of lead (II) supported the highest shoot multiplication, and the maximum number of roots per explant was found in 100 µM of lead (II), whereas a higher concentration of heavy metals inhibited shoot multiplication and root development. The plantlets were hardened in a greenhouse with a 96% field survival rate. Flame atomic absorption spectroscopy (FAAS) was used to detect heavy metal contents in plant biomass. At both 200 µM and 50 µM concentrations, the greatest accumulation of mercury (II) was observed in the roots (16.94 ± 0.44 µg/g) and shoots (17.71 ± 0.66 µg/g), respectively. Similarly, lead (II) showed the highest accumulation in roots (17.10 ± 0.54 µg/g) and shoots (7.78 ± 0.26 µg/g) at 200 µM and 50 µM exposures, respectively. Reverse-phase high-performance liquid chromatography (RP-HPLC) identified and quantified various phenolic compounds in B. polystachyon leaves, including gallic acid, caffeic acid, vanillic acid, p-coumaric acid, ellagic acid, rosmarinic acid, and trans-cinnamic acid. These compounds were found in different forms, such as free, esterified, and glycosylated. Mercury (II)-exposed plants exhibited elevated levels of vanillic acid (1959.1 ± 3.66 µg/g DW), ellagic acid (213.55 ± 2.11 µg/g DW), and rosmarinic acid (187.72 ± 1.22 µg/g DW). Conversely, lead (II)-exposed plants accumulated higher levels of caffeic acid (42.53±0.61 µg/g DW) and p-coumaric acid (8.04 ± 0.31 µg/g DW). Trans-cinnamic acid was the predominant phenolic compound in control plants, with a concentration of 207.74 ± 1.45 µg/g DW. These results suggest that sublethal doses of heavy metals can act as abiotic elicitors, enhancing the production of phenolic compounds in B. polystachyon. The present work has the potential to open up new commercial opportunities in the pharmaceutical industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...