Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 36(38)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38897193

ABSTRACT

Using both first principles and analytical approaches, we investigate the role of a transverse electric field in tuning the electrical, thermoelectric, optical and transport properties of a buckled tetragonal silicene (TS) structure. The transverse electric field transforms the linear spectrum to parabolic at the Fermi level and opens a band gap. The gap is similar at the two Dirac points present in the irreducible Brillouin zone of the TS structure and increases in proportion to the applied field strength. However, a sufficiently strong electric field converts the system into a metallic one. A comparable band opening is also seen in the TS nanoribbons. Electric field-induced semiconducting nature improves its thermoelectric properties. Estimated Debye temperature reveals its superiority over graphene in terms of thermoelectric performance. The optical response of the structures is very asymmetric. Large values of imaginary and real components of the dielectric function are seen. The absorption frequency lies in the UV region. Plasma frequencies are identified and are red-shifted with the applied field. The current-voltage characteristics of the symmetric type nanoribbons show oscillation in current whereas the voltage-rectifying capability of anti-symmetric type nanoribbons under a transverse electric field is interesting.

2.
ACS Omega ; 7(17): 14579-14590, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35557662

ABSTRACT

The present study was intended to determine the possible influences of direct field application of choline chloride into pond water in addition to farm-made-aqua-feed under a semi-intensive culture system on the growth and biochemical parameters of two Indian major carps (IMCs), Catla catla (Catla) and Labeo rohita (Rahu), and two air-breathing species, Clarias batrachus (Magur) and Anabas testudineus (Koi), cultured in a ratio of 2:5:1:1 (Catla/Rahu/Magur/Koi) in three experimental ponds for a period of 90 days during the breeding season (June to August). Results were compared with control (C: fed only with farm-made-aqua-feed) and treatment (T: P1 and P2: farm-made-aqua-feed plus choline chloride into pond water directly at the rate of 350 g bigha-1 fortnightly or 350 g per 1600 square meter fortnightly). A significant increasing trend was observed in the growth parameters including total length-final (TLF), standard length-final (SLF), mean weight-final (MWF), % gain of mean total length (MTL), % gain of mean standard length (MSL), % weight gain (WG), specific growth rate (SGR) % per day, and survivability %. However, a reverse pattern was noticed in the food conversion ratio (FCR) both in IMCs and air-breathing fish species under choline supplementation. Serum biochemical responses, e.g., total protein (PRO), lactate dehydrogenase (LDH), glucose (GLU), and calcium (Ca) showed significant enhancement, and alkaline phosphatase (ALP), alanine amino transaminase (ALT), aspartate amino transaminase (AST), cholesterol (CHOLES), and triglycerides (Trig) showed gradual significant reduction during the breeding season under choline exposure. Treated fishes showed prevention from liver dysfunction and fatty liver formation, and increased body crude protein content. Results indicated favorable growth and yield, which may benefit fish farmers during their culture practices, and the output fish species under choline supplementation resulted in quality food-fish for human consumption.

3.
Phys Chem Chem Phys ; 23(20): 11863-11875, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33988639

ABSTRACT

We report the optical and thermoelectric properties of the two-dimensional Dirac material T-silicene (TS) sheet and nanoribbons (NRs) by first-principles calculations. Both the optical and thermoelectric properties of TS can be modified by tailoring the sheet into nanoribbons of different widths and edge geometries. The optical response of the structures is highly anisotropic. A π interband transition occurs in the visible range of incident light with parallel polarization. The optical response for asymmetric arm-chair TS nanoribbons (ATSNRs) is larger than for symmetric ATSNRs. The absorptions of asymmetric ATSNR are redshifted due to a decrease in the bandgap with the width of the NRs. Plasma frequencies of the sheet and the NRs are identified from the imaginary part of the dielectric function and electron energy loss spectra curves. Thermoelectric properties like electrical conductivity, Seebeck coefficient, power factor, and electronic figure of merit are also studied. Compared with graphene, the TS sheet possesses a higher electrical conductivity and a better figure of merit. Among the NRs, asymmetric ATSNRs exhibit a better thermoelectric performance. All these intriguing features of TS may shed light on fabricating smart opto-electronic and thermoelectric devices.

4.
Ecotoxicol Environ Saf ; 192: 110268, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32036099

ABSTRACT

Present study highlighted the ultramicroscopic (SEM) alterations of the skin, eye, barbel, and fins of spawn of an air-breathing teleost (Clarias batrachus, Linn. 1758) induced by UV-B radiation (280-320 nm) at a dose (@4.07 × 10-20J/photon/m2) under the time-frame of 5, 10 and 15 min/d in the laboratory condition for the periods of 5 and 10 days. Limnological parameters revealed no significant changes throughout the period of experimentation which were measured by PCS Testr 35 Multi-Parameter. Morphometric analysis revealed that during the extended exposure period of 10 days the spawn size and weight were reduced as analysed through Specific Growth Rate (SGR). SGR values in terms of weight for 5 and 10 days under 3 time-frames were 17.12%, 12.52%, 11.46% and 9.09%, 6.43%, 6.09% respectively, which revealed a declined trend along with the exposure days. In the skin of C. batrachus, the compact regular orientation of the stratified epithelial cells and mucous cells became distorted and the microridges and double-ridged structures showed destruction and fragmentations. The body striations and microfolds became shrinked and swollen and finally degenerated to form a mass. The distribution of mucous cells throughout the epidermis was disorganised and releasing secretory contents on the surface through small pores. Appearance of huge quantity of biogenic semi-hexagonal plate like crystals (guanine platelets) on the skin surface of the body was the most significant observations during UV-B radiation. In the developmental phases the eyeball showed shrinkage loosing normal regular concave structure and to become a dome-shaped one. The supportive connective infoldings became loosened. The choroid coat displayed deformities and the iris deformed the pupil. The fibroblast on the epithelium and melanocytes depicted dispersed arrangement. The pairs of ventral barbels near the mouth depicted the presence of taste buds that became severely damaged exposing the sensory as well as neuroepithelial cells. Compact regular arrangement of the SECs was completely destroyed leaving long and deep channels inbetween them; the disintegrated concentric MRs also showed a mass.


Subject(s)
Animal Fins/radiation effects , Catfishes , Eye/radiation effects , Skin/radiation effects , Ultraviolet Rays/adverse effects , Animal Fins/ultrastructure , Animals , Dose-Response Relationship, Radiation , Epidermis/radiation effects , Epidermis/ultrastructure , Epithelium/radiation effects , Epithelium/ultrastructure , Eye/ultrastructure , Skin/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...