Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Biomol Chem ; 22(27): 5540-5545, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38916115

ABSTRACT

We report herein an eosin Y/Pd(II) dual catalytic approach for regio- and chemoselective C(sp2)-H monoarylation of N-H unprotected 2-phenyl quinazolinone derivatives under green light irradiation with no necessity for any base/additive/external oxidant. The free N-H moiety was post-modified for quinazolinone scaffold diversification and C-H annulation.

2.
STAR Protoc ; 3(4): 101781, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36317172

ABSTRACT

Here, we present a protocol for the synthesis of dibenzo[c,e]oxepin-5(7H)-ones starting from 2'-alkyl-[1,1'-biphenyl]-2-carboxylic acids. This technique uses two copper(0)-catalyzed benzylic C(sp3)-H activation strategies taking either di-tertbutyl peroxide or gaseous oxygen as an oxidant. We detail a photocatalytic thermal approach for copper powder-catalyzed reaction with oxygen. We also describe a procedure for catalyst recycling in both the strategies. The product has been successfully synthesized both in mmol and gram scale. For complete details on the use and execution of this protocol, please refer to Nandi et al. (2022).


Subject(s)
Copper , Oxidants , Powders , Catalysis , Oxygen
3.
iScience ; 25(5): 104341, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35602936

ABSTRACT

Selective C‒H functionalization in a pool of proximal C‒H bonds, predictably altering their innate reactivity is a daunting challenge. We disclose here, an expedient synthesis of privileged seven-membered lactones, dibenzo[c,e]oxepin-5(7H)-one through a highly chemoselective benzylic C(sp3)‒H activation. Remarkably, the formation of widely explored six-membered lactone via C(sp2)‒H activation is suppressed under the present conditions. The reaction proceeds smoothly on use of inexpensive metallic copper catalyst and di-tert-butyl peroxide (DTBP). Owing to the hazards of stoichiometric DTBP, further, we have developed a sustainable metallic copper/rose bengal dual catalytic system coupled with molecular oxygen replacing DTBP. A 1,5-aryl migration through Smiles rearrangement was realized from the corresponding diaryl ether substrates instead of expected eight-membered lactones. The present methodology is scalable, applied to the total synthesis of cytotoxic and neuroprotective natural product alterlactone. The catalyst is recyclable and the reaction can be performed in a copper bottle without any added catalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...