Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Faraday Discuss ; 248(0): 175-189, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37750344

ABSTRACT

Singlet oxygen (1O2) formation is now recognised as a key aspect of non-aqueous oxygen redox chemistry. For identifying 1O2, chemical trapping via 9,10-dimethylanthracene (DMA) to form the endoperoxide (DMA-O2) has become the main method due to its sensitivity, selectivity, and ease of use. While DMA has been shown to be selective for 1O2, rather than forming DMA-O2 with a wide variety of potentially reactive O-containing species, false positives might hypothetically be obtained in the presence of previously overlooked species. Here, we first provide unequivocal direct spectroscopic proof via the 1O2-specific near-infrared (NIR) emission at 1270 nm for the previously proposed 1O2 formation pathways, which centre around superoxide disproportionation. We then show that peroxocarbonates, common intermediates in metal-O2 and metal carbonate electrochemistry, do not produce false-positive DMA-O2. Moreover, we identify a previously unreported 1O2-forming pathway through the reaction of CO2 with superoxide. Overall, we provide unequivocal proof for 1O2 formation in non-aqueous oxygen redox chemistry and show that chemical trapping with DMA is a reliable method to assess 1O2 formation.

5.
Angew Chem Int Ed Engl ; : e202316476, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38095355

ABSTRACT

The short history of research on Li-O2 batteries has seen a remarkable number of mechanistic U-turns over the years. From the initial use of carbonate electrolytes, that were then found to be entirely unsuitable, to the belief that (su)peroxide was solely responsible for degradation, before the more reactive singlet oxygen was found to form, to the hypothesis that capacity depends on a competing surface/solution mechanism before a practically exclusive solution mechanism was identified. Herein, we argue for an ever-fresh look at the reported data without bias towards supposedly established explanations. We explain how the latest findings on rate and capacity limits, as well as the origin of side reactions, are connected via the disproportionation (DISP) step in the (dis)charge mechanism. Therefrom, directions emerge for the design of electrolytes and mediators on how to suppress side reactions and to enable high rate and high reversible capacity.

6.
ACS Energy Lett ; 7(9): 3112-3119, 2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36120663

ABSTRACT

Capacity, rate performance, and cycle life of aprotic Li-O2 batteries critically depend on reversible electrodeposition of Li2O2. Current understanding states surface-adsorbed versus solvated LiO2 controls Li2O2 growth as surface film or as large particles. Herein, we show that Li2O2 forms across a wide range of electrolytes, carbons, and current densities as particles via solution-mediated LiO2 disproportionation, bringing into question the prevalence of any surface growth under practical conditions. We describe a unified O2 reduction mechanism, which can explain all found capacity relations and Li2O2 morphologies with exclusive solution discharge. Determining particle morphology and achievable capacities are species mobilities, true areal rate, and the degree of LiO2 association in solution. Capacity is conclusively limited by mass transport through the tortuous Li2O2 rather than electron transport through a passivating Li2O2 film. Provided that species mobilities and surface growth are high, high capacities are also achieved with weakly solvating electrolytes, which were previously considered prototypical for low capacity via surface growth.

7.
ACS Omega ; 3(12): 17070-17076, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458326

ABSTRACT

A low-cost, platinum-free electrocatalyst for hydrogen (H2) generation via the water splitting reaction holds great promise to meet the demand of clean and sustainable energy sources. Recent studies are mainly concerned with semiconducting materials like sulfides, selenides, and phosphides of different transition metals as electrocatalysts. Doping of the transition metals within the host matrix is a good strategy to improve the electrocatalytic activity of the host material. However, this activity largely depends on the nature of the dopant metal and its host matrix as well. To exploit this idea, here, in the present work, we have synthesized semiconducting Ag2S nanoparticles and successfully doped them with different transition metals like Mn, Fe, Co, and Ni to study their electrocatalytic activity for the hydrogen evolution reaction from neutral water (pH = 7). Among the systems doped with these transition metals, the Ni-doped Ag2S (Ni-Ag2S) system shows a very low overpotential (50 mV) with high catalytic current in neutral water. The trend in electrocatalytic activity of different transition metals has also been explained. The Ni-Ag2S system also shows very good stability in ambient atmosphere over a long period of time and suffers no catalytic degradation in the presence of oxygen. Structural characterizations are carried out using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy to establish the phase purity and morphology of the materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...