Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Dalton Trans ; 53(28): 11914-11927, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958025

ABSTRACT

Currently, there are many uses of metal complexes, especially in the fields of medicinal chemistry and catalysis. Thus, fabrication of new complexes which perform as a catalyst and chemotherapeutic drug is always a beneficial addition to the literature. Herein, we report three heterocyclic thiosemicarbazone-based Pd(II) complexes [Pd(HL1)Cl] (C1), [Pd(L2)(PPh3)] (C2) and [Pd(L3)(PPh3)]Cl (C3) having coligands Cl and PPh3. Thiosemicarbazone ligands (H2L1, H2L2 and HL3) and the complexes (C1-C3) were characterized methodically using several spectroscopic techniques. Single-crystal X-ray diffraction methods reveal that the structural environment around the metal center of C2 is square planar, while for C1 and C3 it is a slighty distorted square plane. The supramolecular network of compounds was built via hydrogen bonds, C-H⋯π and π⋯π interactions. Density functional theory (DFT) study of the structure of the complexes supports experimental findings. The application of these complexes as catalysts toward Suzuki-Miyaura coupling reactions has been examined with various aryl halides and phenyl boronic acid in PEG 400 solvent. The complexes displayed good biomolecular interactions with DNA/protein, with a binding constant value of the order of 105 M-1. C3 showed greater binding efficacy toward these biomolecules than the other complexes, which might be due to the cationic nature of C3. Furthermore, antitumor activity of the complexes was studied against the human triple-negative breast cancer (TNBC) cell line MDA-MB-231. It was found that C3 was more toxic (IC50 = 10 ± 2.90 µM) toward MDA-MB-231 cells than the other complexes. A known chemotherapeutic drug, 5-fluorouracil, was included as positive control. The programmed cell death mechanism of C3 was confirmed. Additionally, complex-induced apoptosis was confirmed and occurred via a mitochondria-dependent (intrinsic) pathway.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Palladium , Thiosemicarbazones , Palladium/chemistry , Palladium/pharmacology , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Thiosemicarbazones/chemistry , Thiosemicarbazones/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Catalysis , Cell Line, Tumor , Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Molecular Structure , Cell Proliferation/drug effects , Density Functional Theory , Models, Molecular , Apoptosis/drug effects
2.
Viruses ; 16(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38932242

ABSTRACT

Multisystem Inflammatory Syndrome in Children (MIS-C) is a potentially life-threatening complication of COVID-19. The pathophysiological mechanisms leading to severe disease are poorly understood. This study leveraged clinical samples from a well-characterized cohort of children hospitalized with COVID-19 or MIS-C to compare immune-mediated biomarkers. Our objective was to identify selected immune molecules that could explain, in part, why certain SARS-CoV-2-infected children developed MIS-C. We hypothesized that type-2 helper T cell-mediated inflammation can elicit autoantibodies, which may account for some of the differences observed between the moderate-severe COVID-19 (COVID+) and MIS-C cohort. We enumerated blood leukocytes and measured levels of selected serum cytokines, chemokines, antibodies to COVID-19 antigens, and autoantibodies in children presenting to an academic medical center in Connecticut, United States. The neutrophil/lymphocyte and eosinophil/lymphocyte ratios were significantly higher in those in the MIS-C versus COVID+ cohort. IgM and IgA, but not IgG antibodies to SARS-CoV-2 receptor binding domain were significantly higher in the MIS-C cohort than the COVID+ cohort. The serum levels of certain type-2 cytokines (interleukin (IL)-4, IL-5, IL-6, IL-8, IL-10, IL-13, and IL-33) were significantly higher in children with MIS-C compared to the COVID+ and SARS-CoV-2-negative cohorts. IgG autoantibodies to brain antigens and pentraxin were higher in children with MIS-C compared to SARS-CoV-19-negative controls, and children with MIS-C had higher levels of IgG anti-contactin-associated protein-like 2 (caspr2) compared to the COVID+ and SARS-CoV-19-negative controls. We speculate that autoimmune responses in certain COVID-19 patients may induce pathophysiological changes that lead to MIS-C. The triggers of autoimmunity and factors accounting for type-2 inflammation require further investigation.


Subject(s)
Autoantibodies , COVID-19 , Cytokines , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Humans , COVID-19/immunology , COVID-19/blood , COVID-19/complications , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/blood , Child , Female , Male , Prospective Studies , SARS-CoV-2/immunology , Child, Preschool , Autoantibodies/blood , Autoantibodies/immunology , Cytokines/blood , Adolescent , Infant , Biomarkers/blood , Antibodies, Viral/blood , Inflammation/immunology , Inflammation/blood
3.
Analyst ; 149(5): 1557-1570, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38284868

ABSTRACT

In this work, a novel organic receptor, CPI [(E)-3-(4-(9H-carbazol-9-yl)phenyl)-2-(1H-benzo[d]imidazol-2-yl)acrylonitrile], was rationally designed and successfully fabricated for selective and sole recognition of CN- ions over other competitive anions through an obvious chromogenic and ratiometric emission change in DMSO. The distinct and prominent color change upon the addition of CN- can be attributed to the typical ICT process, which is induced by the deprotonation of acidic NH protons in the imidazole moiety. The sensor displayed strong solvatochromic effects in commonly used organic solvents such as n-hexane, toluene, diethyl ether, DCM, THF, DMF and DMSO. The chemical structure of the sensor was characterized by single-crystal X-ray diffraction, 1HNMR, 13CNMR, IR and mass spectroscopy. Significantly, the probe can function as a fluorescence-based sensor for the efficient detection of low-level water in organic solvents. The solid-state emission properties of CPI were successfully applied to recognise cyanide in a solid-state platform with naked eye-visualized distinct color change. The probe can be made reusable by adding TFA into the CN- treated probe solution. The detection limit of CPI towards CN- was determined to be 4.48 × 10-8 M. More importantly, the sensor is capable of detecting CN- in food samples and has been employed for wastewater treatment. Besides, easy-to-prepare CPI-coated test strips provide a simple, reusable and easy-to-handle protocol for the qualitative identification of CN- conveniently. Finally, density functional theory and time-dependent density functional theory were performed to verify the experimental outcomes theoretically.

4.
Anal Methods ; 15(46): 6417-6424, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37966884

ABSTRACT

In this work, a novel fluorescent ratiometric switch, 8-((6-(1H-benzo[d]imidazol-2-yl)pyridin-2-yl)methoxy)quinoline (BIPQ), has been introduced for sensing an organophosphorus (OP) chemical vapor threat, diethyl chlorophosphate (DCP), the low-toxic mimic of the real nerve agent sarin (GB). BIPQ is efficient at detecting DCP in both solution and gaseous phase and has potential practical application with high sensitivity and selectivity. The probe shows significant ratiometric emission in the presence of DCP along with a distinct color change from blue to cyan under UV light. The sensing mechanism of the chemodosimeter is based on the generation of a new adduct, BIPQ-DCP, through a nucleophilic substitution reaction with DCP followed by a ring-closure process to form the final product. The detection limit of BIPQ for DCP was determined to be in the order of 10-8 (M) in the liquid state. DFT and TDDFT computational techniques were carried out in order to interpret the electronic properties theoretically.

5.
Planta ; 258(6): 111, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919614

ABSTRACT

MAIN CONCLUSION: Role of salinity responsive metabolites of rice and its wild species has been discussed. Salinity stress is one of the important environmental stresses that severely affects rice productivity. Although, several vital physio-biochemical and molecular responses have been activated in rice under salinity stress which were well described in literatures, the mechanistic role of salt stress and microbes-induced metabolites to overcome salt stress in rice are less studied. Nevertheless, over the years, metabolomic studies have allowed a comprehensive analyses of rice salt stress responses. Hence, we review the salt stress-triggered alterations of various metabolites in rice and discuss their significant roles toward salinity tolerance. Some of the metabolites such as serotonin, salicylic acid, ferulic acid and gentisic acid may act as signaling molecules to activate different downstream salt-tolerance mechanisms; whereas, the other compounds such as amino acids, sugars and organic acids directly act as protective agents to maintain osmotic balance and scavenger of reactive oxygen species during the salinity stress. The quantity, type, tissues specificity and time of accumulation of metabolites induced by salinity stress vary between salt-sensitive and tolerant rice genotypes and thus, contribute to their different degrees of salt tolerance. Moreover, few tolerance metabolites such as allantoin, serotonin and melatonin induce unique pathways for activation of defence mechanisms in salt-tolerant varieties of rice, suggesting their potential roles as the universal biomarkers for salt tolerance. Therefore, these metabolites can be applied exogenously to the sensitive genotypes of rice to enhance their performance under salt stress. Furthermore, the microbes of rhizosphere also participated in rice salt tolerance either directly or indirectly by regulating their metabolic pathways. Thus, this review for the first time offers valuable and comprehensive insights into salt-induced spatio-temporal and genotype-specific metabolites in different genotypes of rice which provide a reference point to analyze stress-gene-metabolite relationships for the biomarker designing in rice. Further, it can also help to decipher several metabolic systems associated with salt tolerance in rice which will be useful in developing salt-tolerance cultivars by conventional breeding/genetic engineering/exogenous application of metabolites.


Subject(s)
Oryza , Oryza/physiology , Serotonin/metabolism , Plant Breeding , Salt Stress , Metabolomics , Biomarkers , Salinity , Stress, Physiological
6.
J Appl Genet ; 64(4): 645-666, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743422

ABSTRACT

Crop wild relatives (CWRs) are vital sources of variation for genetic improvement, but their populations are few in genebanks, eroded in natural habitats and inadequately characterized. With a view to explore genetic diversity in CWRs of AA genome rice (Oryza sativa L.) species in India, we analyzed 96 accessions of 10 Oryza species by using 17 quantitative traits and 45 microsatellite markers. The morpho-quantitative traits revealed a high extent of phenotypic variation in the germplasm. Diversity index (H') revealed a high level of within-species variability in O. nivara (H' = 1.09) and O. rufipogon (H' = 1.12). Principal component (PC) analysis explained 79.22% variance with five PCs. Among the traits related to phenology, morphology, and yield, days to heading showed strong positive association with days to 50% flowering (r = 0.99). However, filled grains per panicle revealed positive association with spikelet fertility (0.71) but negative with awn length (- 0.58) and panicle bearing tillers (- 0.39). Cluster analysis grouped all the accessions into three major clusters. Microsatellite analysis revealed 676 alleles with 15.02 alleles per locus. High polymorphism information content (PIC = 0.83) and Shannon's information index (I = 2.31) indicated a high level of genetic variation in the CWRs. Structure analysis revealed four subpopulations; first and second subpopulations comprised only of O. nivara accessions, while the third subpopulation included both O. nivara and O. rufipogon accessions. Population statistics revealed a moderate level of genetic differentiation (FST = 0.14), high gene diversity (HE = 0.87), and high gene flow (Nm = 1.53) among the subpopulations. We found a high level of molecular variance among the genotypes (70%) and low among populations (11%) and within genotypes (19%). The high level of molecular and morphological variability detected in the germplasm of CWRs could be utilized for the improvement of cultivated rice.


Subject(s)
Genetic Variation , Oryza , Oryza/genetics , Alleles , Polymorphism, Genetic , Phenotype
7.
Front Microbiol ; 14: 1204512, 2023.
Article in English | MEDLINE | ID: mdl-37485521

ABSTRACT

Sustainable food production is necessary to meet the demand of the incessantly growing human population. Phytopathogens pose a major constraint in food production, and the use of conventional fungicides to manage them is under the purview of criticism due to their numerous setbacks. In the present study, essential oil-grafted copper nanoparticles (EGC) were generated, characterized, and evaluated against the maize fungal pathogens, viz., Bipolaris maydis, Rhizoctonia solani f. sp. sasakii, Macrophomina phaseolina, Fusarium verticillioides, and Sclerotium rolfsii. The ED50 for the fungi under study ranged from 43 to 56 µg ml-1, and a significant inhibition was observed at a low dose of 20 µg ml-1 under in vitro conditions. Under net house conditions, seed treatment + foliar spray at 250 and 500 mg L-1 of EGC performed remarkably against maydis leaf blight (MLB), with reduced percent disease index (PDI) by 27.116 and 25.292%, respectively, in two Kharif seasons (May-Sep, 2021, 2022). The activity of enzymatic antioxidants, viz., ß-1, 3-glucanase, PAL, POX, and PPO, and a non-enzymatic antioxidant (total phenolics) was increased in treated maize plants, indicating host defense was triggered. The optimum concentrations of EGC (250 mg L-1 and 500 mg L-1) exhibited improved physiological characteristics such as photosynthetic activity, shoot biomass, plant height, germination percentage, vigor index, and root system traits. However, higher concentrations of 1,000 mg L-1 rendered phytotoxicity, reducing growth, biomass, and copper bioaccumulation to high toxic levels, mainly in the foliar-sprayed maize leaves. In addition, EGC and copper nanoparticles (CuNPs) at 1,000 mg L-1 reduced the absorption and concentration of manganese and zinc indicating a negative correlation between Cu and Mn/Zn. Our study proposes that the CuNPs combined with EO (Clove oil) exhibit astounding synergistic efficacy against maize fungal pathogens and optimized concentrations can be used as an alternative to commercial fungicides without any serious impact on environmental health.

8.
Int J Biol Macromol ; 242(Pt 3): 125172, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37268077

ABSTRACT

Salinity is an imbalanced concentration of mineral salts in the soil or water that causes yield loss in salt-sensitive crops. Rice plant is vulnerable to soil salinity stress at seedling and reproductive stages. Different non-coding RNAs (ncRNAs) post-transcriptionally regulate different sets of genes during different developmental stages under varying salinity tolerance levels. While microRNAs (miRNAs) are well known small endogenous ncRNAs, tRNA-derived RNA fragments (tRFs) are an emerging class of small ncRNAs derived from tRNA genes with a demonstrated regulatory role, like miRNAs, in humans but unexplored in plants. Circular RNA (circRNA), another ncRNA produced by back-splicing events, acts as target mimics by preventing miRNAs from binding with their target mRNAs, thereby reducing the miRNA's action upon its target. Same may hold true between circRNAs and tRFs. Hence, the work done on these ncRNAs was reviewed and no reports were found for circRNAs and tRFs under salinity stress in rice, either at seedling or reproductive stages. Even the reports on miRNAs are restricted to seedling stage only, in spite of severe effects on rice crop production due to salt stress during reproductive stage. Moreover, this review sheds light on strategies to predict and analyze these ncRNAs in an effective manner.


Subject(s)
MicroRNAs , Oryza , RNA, Long Noncoding , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Oryza/genetics , Oryza/metabolism , RNA, Untranslated/genetics , RNA, Transfer/metabolism , Seedlings/genetics , Seedlings/metabolism , Salt Tolerance , RNA, Long Noncoding/metabolism
9.
Anal Methods ; 15(22): 2745-2754, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37248997

ABSTRACT

A diversified biphenyl thiosemicarbazide based chemosensor (HBMC) has been fabricated and reported for the specific detection of Cd2+ in a MeOH : H2O (4 : 1) solution. We observed a chromogenic change from colorless to light yellow colour, and it showed a "turn-on" fluorogenic change from non fluorescent to blooming cyan colour. In fluorometric titration a sharp "turn-on" emission for Cd2+ was observed with a ∼16 fold increase in fluorescence intensity value at 496 nm by incremental addition of Cd2+ ions in the MeOH : H2O (4 : 1) solution. The reversibility of the chemosensor (HBMC) was confirmed by a sequential addition of the EDTA solution. Again the binding stoichiometry of HBMC with Cd2+ was found to be 2 : 1, as confirmed by Job's plot analysis and HRMS spectra of the HBMC-Cd2+ complex. The mechanism for Cd2+ sensing in MeOH : H2O (4 : 1) is based upon the inhibition of CN isomerization and ESIPT process and simultaneously turning on the CHEF (chelation enhanced fluorescence) process. The limit of detection for Cd2+ was found to be in the order of 10-8 (M), which implies that HBMC is an efficient probe to detect Cd2+ at the microscopic level. A reusability study was performed and on-sight detection of cadmium ions by the chemosensor (HBMC) was established by dip-stick experiment. In vitro detection of Cd2+ in human breast cancer cells (MDA-MB-231) by HBMC discloses its cell permeability and biocompatible nature. Computational studies (DFT and TDDFT) with the probe HBMC and HBMC-Cd2+ complex were also performed.


Subject(s)
Cadmium , Humans , Cadmium/analysis , Spectrometry, Fluorescence/methods , Ions
10.
Plant Mol Biol ; 112(3): 143-160, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37184674

ABSTRACT

Soil salinity stress is one of the major bottlenecks for crop production. Although, allantoin is known to be involved in nitrogen metabolism in plants, yet several reports in recent time indicate its involvement in various abiotic stress responses including salinity stress. However, the detail mechanism of allantoin involvement in salinity stress tolerance in plants is not studied well. Moreover, we demonstrated the role of exogenous application of allantoin as well as increased concentration of endogenous allantoin in rendering salinity tolerance in rice and Arabidopsis respectively, via., induction of abscisic acid (ABA) and brassinosteroid (BR) biosynthesis pathways. Exogenous application of allantoin (10 µM) provides  salt-tolerance to salt-sensitive rice genotype (IR-29). Transcriptomic data after exogenous supplementation of allantoin under salinity stress showed induction of ABA (OsNCED1) and BR (Oscytochrome P450) biosynthesis genes in IR-29. Further, the key gene of allantoin biosynthesis pathway i.e., urate oxidase of the halophytic species Oryza coarctata was also found to induce ABA and BR biosynthesis genes when over-expressed in transgenic Arabidopsis. Thus, indicating that ABA and BR biosynthesis pathways were involved in allantoin mediated salinity tolerance in both rice and Arabidopsis. Additionally, it has been found that several physio-chemical parameters such as biomass, Na+/K+ ratio, MDA, soluble sugar, proline, allantoin and chlorophyll contents were also associated with the allantoin-mediated salinity tolerance in urate oxidase overexpressed lines of Arabidopsis. These findings depicted the functional conservation of allantoin for salinity tolerance in both plant clades.


Subject(s)
Arabidopsis , Oryza , Arabidopsis/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Oryza/genetics , Oryza/metabolism , Salt Tolerance/genetics , Allantoin/metabolism , Brassinosteroids/pharmacology , Brassinosteroids/metabolism , Urate Oxidase/genetics , Urate Oxidase/metabolism , Plant Proteins/metabolism , Stress, Physiological/genetics , Salinity , Gene Expression Regulation, Plant , Plants, Genetically Modified/metabolism
11.
Dalton Trans ; 52(18): 5983-5998, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37039520

ABSTRACT

Given the ubiquitous and multifaceted role of copper ions in various biological processes, we report herein the one-pot facile synthesis, X-ray structure, Hirshfeld surface analysis, enzyme-like activities, and biomolecular interactions of three mononuclear copper(II) complexes, [Cu(L)(X)] (1-3) with a tridentate quinoline-based salicylaldimine Schiff base (LH) having an N2O donor set where X denotes NCS, N3, and NO3 for complexes 1, 2, and 3, respectively. Single-crystal X-ray study, spectroscopic techniques, DFT, and TD-DFT calculations were all used to fully characterize the complexes. The bio-inspired catalytic activities of the synthesized complexes were spectrophotometrically evaluated for the aerial oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) and 2-aminophenol (OAPH) in acetonitrile. The results of ESI mass spectrometry, EPR analysis of the reaction mixture, and DFT computations established that the aforementioned oxidation is metal-mediated and radical-driven, leading us to propose a viable mechanistic scheme. In complex 3, coordinated nitrate probably confers greater lability, allowing it to be the most effective enzyme for catecholase and phenoxazane-synthase activities. The biological activity of complexes 1-3 and the ligand LH towards calf thymus DNA and proteins (bovine serum albumin (BSA)) was explored using absorption and fluorescence spectral titrations, which affirmed that the compounds underwent avid binding with DNA, with high binding affinities (Kb) of approximately 104-105 M-1. The observed DNA binding constants and viscosity measurement data suggested an intercalative mode of DNA binding with the copper(II) complexes. Spectral evidence also supports the high binding propensity (on the order of approximately 105 M-1) of the complexes with the protein. They actively suppressed the protein's intrinsic fluorescence in a static quenching mode, as further determined by fluorescence lifetime titration of protein with the complexes. Circular dichroism and synchronous spectroscopic experiments supported the protein's conformational alterations mediated by copper(II) complexes (1-3) in the microenvironment of the tryptophan residue of the protein. The typical binding distance between BSA and complexes was also computed using fluorescence resonance energy transfer. Of the three complexes (1-3), complex 3 stands out as the most efficacious.


Subject(s)
Coordination Complexes , Copper , Copper/chemistry , Coordination Complexes/chemistry , DNA/chemistry , Molecular Conformation , Models, Theoretical , Serum Albumin, Bovine/chemistry , Ligands , Crystallography, X-Ray
12.
J Fluoresc ; 33(6): 2403-2414, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37084063

ABSTRACT

A new coumarin based fluorescent switch PCEH is fabricated which displays high selective sensing towards Al3+ among other metal cations at physiological pH. On gradual addition of Al3+, PCEH shows a brilliant "turn-on" emission enhancement in MeOH/H2O (4/1, v/v) solution. This new fluorescent switch is proven to be a reversible probe by gradual addition of F- into the PCEH-Al3+ solution. Detection limit as well as binding constant values are calculated to be in the order of 10-9 M and 104 M-1 respectively. We have also explored its potential as a biomarker in the application of live cell imaging using breast cancer cells (MDA-MB-231 cell).


Subject(s)
Aluminum , Fluorescent Dyes , Aluminum/metabolism , Cations , Microscopy, Fluorescence/methods , Coumarins , Spectrometry, Fluorescence/methods
13.
Cell Stress Chaperones ; 28(2): 201-217, 2023 03.
Article in English | MEDLINE | ID: mdl-36795226

ABSTRACT

Oxidative stress including decreased antioxidant enzyme activities, elevated lipid peroxidation, and accumulation of advanced glycation end products in the blood from children with autism spectrum disorders (ASD) has been reported. The mechanisms affecting the development of ASD remain unclear; however, toxic environmental exposures leading to oxidative stress have been proposed to play a significant role. The BTBRT+Itpr3tf/J (BTBR) strain provides a model to investigate the markers of oxidation in a mouse strain exhibiting ASD-like behavioral phenotypes. In the present study, we investigated the level of oxidative stress and its effects on immune cell populations, specifically oxidative stress affecting surface thiols (R-SH), intracellular glutathione (iGSH), and expression of brain biomarkers that may contribute to the development of the ASD-like phenotypes that have been observed and reported in BTBR mice. Lower levels of cell surface R-SH were detected on multiple immune cell subpopulations from blood, spleens, and lymph nodes and for sera R-SH levels of BTBR mice compared to C57BL/6 J (B6) mice. The iGSH levels of immune cell populations were also lower in the BTBR mice. Elevated protein expression of GATA3, TGM2, AhR, EPHX2, TSLP, PTEN, IRE1α, GDF15, and metallothionein in BTBR mice is supportive of an increased level of oxidative stress in BTBR mice and may underpin the pro-inflammatory immune state that has been reported in the BTBR strain. Results of a decreased antioxidant system suggest an important oxidative stress role in the development of the BTBR ASD-like phenotype.


Subject(s)
Autistic Disorder , Mice , Animals , Autistic Disorder/genetics , Autistic Disorder/metabolism , Autistic Disorder/pathology , Endoribonucleases/metabolism , Antioxidants/metabolism , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Oxidative Stress , Disease Models, Animal
14.
Biosens Bioelectron ; 218: 114764, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36206669

ABSTRACT

Urinary bladder cancer (UBC) is one of the most common cancers and has notoriously high risk of recurrence and mortality across the globe. Current clinical initial diagnostic approaches are either invasive or lacks sensitivity. In this study, an attempt has been made to invent a cost-effective, novel, portable diagnostic device based on the environmental sensitive fluorophores namely Nile Red (NR), Eosin Y (EY) and Rose Bengal (RB). They act as sensing agents for detecting volatile organic compounds (VOC) exclusively present in the urine sample of UBC patients and differentiate the UBC samples from the healthy control group. Upon exposure with a particular group of VOCs, a significant amount of increment in fluorescence intensities of NR, EY and RB were detected and recorded in our indigenously developed "NABIL" device. To check the performance of NABIL, the data collected from the device was compared with the conventional techniques by arranging a clinical trial with 21 healthy controls and 52 UBC patients. With the assistance of our analysis technique based on LabVIEW platform, very high sensitivity and accuracy from healthy controls have been achieved. For UBC patients, it shows impressive diagnostic results. In addition, depending on the sample processing mechanism, NABIL device can also reveal the grade of UBC and prognosis under treatment. Overall, this study contributes a novel, non-invasive, easy-to-use, inexpensive, real-time, accurate method for selectively UBC diagnosis, which can be useful for personalized care/diagnosis and postoperative surveillance, resulting in saving more lives.


Subject(s)
Biosensing Techniques , Urinary Bladder Neoplasms , Volatile Organic Compounds , Humans , Biomarkers , Biomarkers, Tumor/urine , Eosine Yellowish-(YS) , Rose Bengal , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/urine
15.
Sci Rep ; 12(1): 16233, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171247

ABSTRACT

Marker-assisted breeding and tagging of important quantitative trait loci for beneficial traits are two important strategies for the genetic improvement of plants. However, the scarcity of diverse and informative genetic markers covering the entire tea genome limits our ability to achieve such goals. In the present study, we used a comparative genomic approach to mine the tea genomes of Camellia sinensis var. assamica (CSA) and C. sinensis var. sinensis (CSS) to identify the markers to differentiate tea genotypes. In our study, 43 and 60 Camellia sinensis miniature inverted-repeat transposable element (CsMITE) families were identified in these two sequenced tea genomes, with 23,170 and 37,958 putative CsMITE sequences, respectively. In addition, we identified 4912 non-redundant, Camellia sinensis intron length polymorphic (CsILP) markers, 85.8% of which were shared by both the CSS and CSA genomes. To validate, a subset of randomly chosen 10 CsMITE markers and 15 CsILP markers were tested and found to be polymorphic among the 36 highly diverse tea genotypes. These genome-wide markers, which were identified for the first time in tea plants, will be a valuable resource for genetic diversity analysis as well as marker-assisted breeding of tea genotypes for quality improvement.


Subject(s)
Camellia sinensis , Camellia sinensis/genetics , DNA Transposable Elements/genetics , Genetic Markers , Humans , Introns/genetics , Plant Breeding , Tea
16.
Phys Chem Chem Phys ; 24(35): 20941-20952, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36053209

ABSTRACT

A new ratiometric fluorescent probe (E)-2-(benzo[d]thiazol-2-yl)-3-(8-methoxyquinolin-2-yl)acrylonitrile (HQCN) was synthesised by the perfect blending of quinoline and a 2-benzothiazoleacetonitrile unit. In a mixed aqueous solution, HQCN reacts with hydrazine (N2H4) to give a new product 2-(hydrazonomethyl)-8-methoxyquinoline along with the liberation of the 2-benzothiazoleacetonitrile moiety. In contrast, the reaction of hypochlorite ions (OCl-) with the probe gives 8-methoxyquinoline-2-carbaldehyde. In both cases, the chemodosimetric approaches of hydrazine and hypochlorite selectively occur at the olefinic carbon but give two different products with two different outputs, as observed from the fluorescence study exhibiting signals at 455 nm and 500 nm for hydrazine and hypochlorite, respectively. A UV-vis spectroscopy study also depicts a distinct change in the spectrum of HQCN in the presence of hydrazine and hypochlorite. The hydrazinolysis of HQCN exhibits a prominent chromogenic as well as ratiometric fluorescence change with a 165 nm left-shift in the fluorescence spectrum. Similarly, the probe in hand (HQCN) can selectively detect hypochlorite in a ratiometric manner with a shift of 120 nm, as observed from the fluorescence emission spectra. HQCN can detect hydrazine and OCl- as low as 2.25 × 10-8 M and 3.46 × 10-8 M, respectively, as evaluated from the fluorescence experiments again. The excited state behaviour of the probe HQCN and the chemodosimetric products with hydrazine and hypochlorite are studied by the nanosecond time-resolved fluorescence technique. Computational studies (DFT and TDDFT) with the probe and the hydrazine and hypochlorite products were also performed. The observations made in the fluorescence imaging studies with human blood cells manifest that HQCN can be employed to monitor hydrazine and OCl- in human peripheral blood mononuclear cells (PBMCs). It is indeed a rare case that the single probe HQCN is found to be successfully able to detect hydrazine and hypochlorite in PBMCs, with two different outputs.


Subject(s)
Hypochlorous Acid , Leukocytes, Mononuclear , Fluorescent Dyes/chemistry , Humans , Hydrazines , Hypochlorous Acid/chemistry , Spectrometry, Fluorescence
17.
Plants (Basel) ; 11(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893634

ABSTRACT

The exploitation of heterosis through intersubspecific hybridisation between indica and japonica has been a major breeding target in rice, but is marred by the cross incompatibility between the genomes. Wide compatibility (WC) is a triallelic system at the S5 locus on chromosome 6 that ensures the specificity of hybridisation within and between indica and japonica. The S5n allele that favours intercrossing is sparsely distributed in the rice gene pool and therefore warrants identification of diverse WC sources to develop superior intersubspecific hybrids. In this study, we have identified several novel WC sources through the marker-assisted screening of a large set of 950 rice genotypes. Seventeen percent of the genotypes carried S5n, which fell into two subpopulations. The WC genotypes showed wide phenotypic and genotypic variability, including both indica and japonica lines. Based on phenotypic performance, the WC varieties were grouped into three clusters. A subset of 41 WC varieties was used to develop 164 hybrids, of which WC/japonica hybrids showed relative superiority over WC/indica hybrids. The multilocation evaluation of hybrids indicated that hybrids derived from WC varieties, such as IRG137, IRG143, OYR128, and IRGC10658, were higher yielding across all the three different locations. Most of the hybrids showed the stability of performance across locations. The identified diverse set of wide compatible varieties (WCVs) can be used in the development of intersubspecific hybrids and also for parental line development in hybrid rice breeding.

18.
Genomics ; 114(5): 110436, 2022 09.
Article in English | MEDLINE | ID: mdl-35902069

ABSTRACT

Black rice is famous for containing high anthocyanin while Joha rice is aromatic with low anthocyanin containing rice from the North-Eastern Region (NER) of India. However, there are limited reports on the anthocyanin biosynthesis in Manipur Black rice. Therefore, the present study was aimed to understand the origin, domestication and anthocyanin biosynthesis pathways in Black rice using the next generation sequencing approaches. With the sequencing data, various analyses were carried out for differential expression and construction of a pan-genome. Protein coding RNA and small RNA sequencing analysis aided in determining 7415 and 131 differentially expressed transcripts and miRNAs, respectively in NER rice. This is the first extensive study on identification and expression analysis of miRNAs and their target genes in regulating anthocyanin biosynthesis in NER rice. This study will aid in better understanding for decoding the theory of high or low anthocyanin content in different rice genotypes.


Subject(s)
MicroRNAs , Oryza , Anthocyanins , Gene Expression Regulation, Plant , Genetic Variation , Genomics , India , MicroRNAs/genetics , MicroRNAs/metabolism , Oryza/genetics , Oryza/metabolism , Transcriptome
19.
Physiol Plant ; 174(4): e13736, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35716004

ABSTRACT

Deepwater is an abiotic stress that limits rice cultivation worldwide due to recurrent floods. The miRNAs and lncRNAs are two non-coding RNAs emerging as major regulators of gene expressions under different abiotic stresses. However, the regulation of these two non-coding RNAs under deepwater stress in rice is still unexplored. In this study, small RNA-seq and RNA-seq from internode and node tissues were analyzed to predict deepwater stress responsive miRNAs and lncRNAs, respectively. Additionally, a competitive endogenous RNA (ceRNA) study revealed about 69 and 25 lncRNAs acting as endogenous target mimics (eTM) with the internode and node miRNAs, respectively. In ceRNA analyses, some of the key miRNAs such as miR1850.1, miR1848, and IN-nov-miR145 were upregulated while miR159e was downregulated, and their respective eTM lncRNAs and targets were found to have opposite expressions. Moreover, we have transiently expressed one module (IN-nov-miR145-Cc-TCONS_00011544-Os11g36430.3) in tobacco leaves. The integrated analysis has identified differentially expressed (DE) miRNAs, lncRNAs and their target genes, and the complex regulatory network, which might lead to stem elongation under deepwater stress. In this novel attempt to identify and characterize miRNAs and lncRNAs under deepwater stress in rice, we have provided, probably for the first time, a reference platform to study the interactions of these two non-coding RNAs with respective target genes through transient expression analyses.


Subject(s)
MicroRNAs , Oryza , RNA, Long Noncoding , Gene Regulatory Networks , MicroRNAs/genetics , MicroRNAs/metabolism , Oryza/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/metabolism , Stress, Physiological/genetics
20.
J Biomol Struct Dyn ; 40(7): 2893-2907, 2022 04.
Article in English | MEDLINE | ID: mdl-33179569

ABSTRACT

A multi-omics-based approach targeting the plant-based natural products from Thumbai (Leucas aspera), an important yet untapped potential source of many therapeutic agents for myriads of immunological conditions and genetic disorders, was conceptualized to reconnoiter its potential biomedical application. A library of 79 compounds from this plant was created, out of which 9 compounds qualified the pharmacokinetics parameters. Reverse pharmacophore technique for target fishing of the screened compounds was executed through which renin receptor (ATP6AP2) and thymidylate kinase (DTYMK) were identified as potential targets. Network biology approaches were used to comprehend and validate the functional, biochemical and clinical relevance of the targets. The target-ligand interaction and subsequent stability parameters at molecular scale were investigated using multiple strategies including molecular modeling, pharmacophore approaches and molecular dynamics simulation. Herein, isololiolide and 4-hydroxy-2-methoxycinnamaldehyde were substantiated as the lead molecules exhibiting comparatively the best binding affinity against the two putative protein targets. These natural lead products from L. aspera and the combinatorial effects may have plausible medical applications in a wide variety of neurodegenerative, genetic and developmental disorders. The lead molecules also exhibit promising alternative in diagnostics and therapeutics through immuno-modulation targeting natural killer T-cell function in transplantation-related pathogenesis, autoimmune and other immunological disorders.Communicated by Ramaswamy H. Sarma.


Subject(s)
Biological Products , Natural Killer T-Cells , Biological Products/pharmacology , Lamiaceae , Molecular Docking Simulation , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...