Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(7): 17226-17244, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36194330

ABSTRACT

Here, silica sand-supported heterojunction composite of nano zinc oxide (nZnO) and graphene oxide nanosheet (nZnO-GO@SS) was prepared, and its potential as an efficient photocatalyst for the degradation of methylene blue (MB) and Rhodamine-B (Rh-B) under sunlight was demonstrated. Transmission electron microscopy confirmed the uniform distribution of spherically shaped nZnO of average size of approximately 8 nm over graphene oxide nanosheet (GO) in the composites. Photodegradation yields of 95.3% and 97.5% for 100 ppm of MB and Rh-B dye within 150 and 220 min, respectively, were achieved under sunlight by the prepared nanocatalyst (nZnO-GO), while sand microparticle-supported nanocatalyst (nZnO-GO@SS) demonstrated faster degradation of MB and Rh-B, i.e., within 120 and 160 min, respectively. Furthermore, when the recyclability of the photocatalyst was studied, the nZnO-GO exhibited more than 80% degradation efficiency after five cycles for both the dyes and nZnO-GO@SS demonstrated 10% higher (~90%) removal capability after five cycles of reuse. Furthermore, the antibacterial assay showed complete inactivation of Escherichia coli and Staphylococcus aureus bacterial strain by nZnO-GO@SS. Hence, our proposed strategy for the removal of toxic dyes from the aquatic environment under sunlight proved that sand microparticle-supported nanocatalyst (nZnO-GO@SS) might be a superior, cost-effective, and suitable photocatalytic system for industrial applications toward toxic dye removal and decontamination from industrial wastewater.


Subject(s)
Zinc Oxide , Zinc Oxide/pharmacology , Sunlight , Silicon Dioxide , Sand , Azo Compounds , Anti-Bacterial Agents/pharmacology , Coloring Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...