Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta ; 1860(6): 1129-38, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26922833

ABSTRACT

BACKGROUND: Intra-molecular G-quadruplex structures are present in the guanine rich regions of human telomeres and were found to be prevalent in gene promoters. More recently, the targeting of c-MYC transcriptional control has been suggested, because the over expression of the c-MYC oncogene is one of the most common aberration found in a wide range of human tumors. METHODS: The interaction of nemorubicin and doxorubicin with DNA G-quadruplex structures has been studied by NMR, ESI-MS and molecular modelling, in order to obtain further information about the complex and the multiple mechanisms of action of these drugs. RESULTS AND CONCLUSIONS: Nemorubicin intercalates between A3 and G4 of d(TTAGGGT)4 and form cap-complex at the G6pT7 site. The presence of the adenine in this sequence is important for the stabilization of the complex, as was shown by the interaction with d(TTGGGTT)4 and d(TTTGGGT)4, which form only a 1:1 complex. The interaction of doxorubicin with d(TTAGGGT)4 is similar, but the complex appears less stable. Nemorubicin also binds with high efficiency the c-MYC G-quadruplex sequence Pu22, to form a very well defined complex. Two nemorubicin molecules bind to the 3'-end and to the 5'-end, forming an additional plane of stacking over each external G-tetrad. The wild type c-MYCPu22 sequence forms with nemorubicin the same complex. GENERAL SIGNIFICANCE: Nemorubicin and doxorubicin, not only intercalate into the duplex DNA, but also result in significant ligands for G-quadruplex DNA segments, stabilizing their structure; this may in part explain the multiple mechanisms of action of their antitumor activity.


Subject(s)
Antineoplastic Agents/chemistry , Doxorubicin/analogs & derivatives , Doxorubicin/chemistry , G-Quadruplexes , Genes, myc , Promoter Regions, Genetic , Telomere , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrometry, Mass, Electrospray Ionization
2.
Bioorg Med Chem ; 20(24): 6979-88, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23154079

ABSTRACT

The antitumor anthracycline nemorubicin is converted by human liver microsomes to a major metabolite, PNU-159682 (PNU), which was found to be much more potent than its parent drug toward cultured tumor cells and in vivo tumor models. The mechanism of action of nemorubicin appears different from other anthracyclines and until now is the object of studies. In fact PNU is deemed to play a dominant, but still unclear, role in the in vivo antitumor activity of nemorubicin. The interaction of PNU with the oligonucleotides d(CGTACG)(2), d(CGATCG)(2) and d(CGCGCG)(2) was studied with a combined use of (1)H and (31)P NMR spectroscopy and by ESI-mass experiments. The NMR studies allowed to establish that the intercalation between the base pairs of the duplex leads to very stable complexes and at the same time to exclude the formation of covalent bonds. Melting experiments monitored by NMR, allowed to observe with high accuracy the behaviour of the imine protons with temperature, and the results showed that the re-annealing occurs after melting. The formation of reversible complexes was confirmed by HPLC-tandem mass spectra, also combined with endonuclease P1digestion. The MS/MS spectra showed the loss of neutral PNU before breaking the double helix, a behaviour typical of intercalators. After digestion with the enzyme, the spectra did not show any compound with PNU bound to the bases. The evidence of a reversible process appears from both proton and phosphorus NOESY spectra of PNU bound to d(CGTACG)(2) and to d(CGATCG)(2). The dissociation rate constants (k(off)) of the slow step of the intercalation process, measured by (31)P NMR NOE-exchange experiments, showed that the kinetics of the process is slower for PNU than for doxorubicin and nemorubicin, leading to a 10- to 20-fold increase of the residence time of PNU into the intercalation sites, with respect to doxorubicin. A relevant number of NOE interactions allowed to derive a model of the complexes in solution from restrained MD calculations. The conformation of PNU bound to the oligonucleotides was also derived from the coupling constant values.


Subject(s)
DNA/chemistry , DNA/drug effects , Doxorubicin/analogs & derivatives , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/metabolism , Antibiotics, Antineoplastic/pharmacology , Base Pairing , Cytosine/chemistry , Cytosine/metabolism , DNA/metabolism , Doxorubicin/chemistry , Doxorubicin/metabolism , Doxorubicin/pharmacology , Guanine/chemistry , Guanine/metabolism , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Oligonucleotides/chemistry , Oligonucleotides/metabolism , Spectrophotometry, Ultraviolet , Thermodynamics , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/metabolism , Topoisomerase II Inhibitors/pharmacology
3.
Bioorg Med Chem ; 18(4): 1497-506, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20116264

ABSTRACT

Among the disaccharide derivatives of the antitumor anthracycline doxorubicin, sabarubicin (Men10755) is more active and less cytotoxic than doxorubicin. It showed a strong in vivo antitumor activity in all preclinical models examined, in conjunction with a better tolerability, and is now in phase II clinical trials. The interaction of sabarubicin and Men10749 (a similar disaccharide with a different configuration at C-4' of the proximal sugar) with the hexanucleotides d(CGTACG)(2) and d(CGATCG)(2) was studied by a combined use of 2D-(1)H and (31)P NMR techniques. Both (1)H and (31)P chemical shifts of imino protons and phosphates allowed to established the intercalation sites between the CG base pairs, as it occurs for other anthracyclines of the series. The dissociation rate constants (k(off)) of the slow step of the intercalation process were measured for Men10755 and Men10749, by NMR NOE-exchange experiments. The increase of k(off) , with respect of doxorubicin, showed that the intercalation process is significantly faster for both drugs, leading to an average residence time for sabarubicin into d(CGTACG)(2) sixfold shorter than for doxorubicin. This could give account of both higher cytoplasmic/nuclear ratio and lower cellular uptake of sabarubicin in comparison with doxorubicin and accordingly of the lower cytotoxicity of these disaccharide analogues. A relevant number of NOE interactions allowed the structure of the complexes in solution to be derived through restrained MD calculations. NMR-DOSY experiments were performed with several drug/oligonucleotide mixtures in order to determine the structure and the dimension of the aggregates.


Subject(s)
Antineoplastic Agents/chemistry , DNA/chemistry , Disaccharides/chemistry , Doxorubicin/analogs & derivatives , Doxorubicin/chemistry , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Spectrophotometry, Ultraviolet
4.
Bioorg Med Chem ; 17(2): 484-91, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-19097800

ABSTRACT

A water soluble derivative (2) of topopyrones was selected for NMR studies directed to elucidate the mode of binding with specific oligonucleotides. Topopyrone 2 can intercalate into the CG base pairs, but the residence time into the double helix is very short and a fast chemical exchange averaging occurs at room temperature between the free and bound species. The equilibria involved become slow below room temperature, thus allowing to measure a mean lifetime of the complex of ca. 7 ms at 15 degrees C. Structural models of the complex with d(CGTACG)(2) were developed on the basis of DOSY, 2D NOESY and (31)P NMR experiments. Topopyrone 2 presents a strong tendency to self-associate. In the presence of oligonucleotide a certain number of ligand molecules are found to externally stack to the double-helix, in addition to a small fraction of the same ligand intercalated. The external binding to the ionic surface of the phosphoribose chains may thus represents the first step of the intercalation process.


Subject(s)
Anthraquinones/chemistry , DNA/chemistry , Pyrones/chemistry , Topoisomerase I Inhibitors , Anthraquinones/pharmacology , Base Sequence , Binding Sites , DNA/metabolism , Humans , Intercalating Agents , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Pyrones/pharmacology , Solubility
5.
J Med Chem ; 49(5): 1808-17, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509596

ABSTRACT

A series of six arginine-glycine-aspartate (RGD) cyclopeptide analogues containing a C(alpha)-di- or trifluoromethylamino acid (alpha-Dfm or alpha-TfmAaa) at different positions of the ring were synthesized. All peptides were obtained in two diastereomeric forms, which were separated by HPLC. In vitro biological tests of the new cyclopeptides P were carried out in comparison with their corresponding cyclopeptides R lacking the alpha-fluoromethyl group. Five out of the six compounds P-I (containing (S)-alpha-Tfm-Aaa) showed activities in the nanomolar range, while the P-II compounds (containing (R)-alpha-Tfm-Aaa) were much less active or totally inactive. Only cyclo[RGDf-(S)-alphaTfmV] (P1-I) was found to be significantly more active than its model compound cyclo(RGDfV) (R1). The three-dimensional structure in water and DMSO was determined by NMR techniques and molecular dynamics (MD) calculations, but it was not possible to highlight significant differences in the backbone conformation of the peptides examined. Significant interproton distances, derived from nuclear Overhauser effect (NOE) experiments, were used to determine the absolute configuration of the side chains.


Subject(s)
Amino Acids/chemistry , Fluorine , Oligopeptides/chemical synthesis , Peptides, Cyclic/chemical synthesis , Dimethyl Sulfoxide , Integrin alphaVbeta3/chemistry , Integrins/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Oligopeptides/chemistry , Peptides, Cyclic/chemistry , Receptors, Vitronectin/chemistry , Stereoisomerism , Structure-Activity Relationship , Water
6.
Org Biomol Chem ; 3(15): 2848-58, 2005 Aug 07.
Article in English | MEDLINE | ID: mdl-16032363

ABSTRACT

Several benzo[b]isoquino[2,3-h]-naphthyridines have been prepared via formal hetero-Diels Alder reaction of N-aryl imines as a key step. These compounds have different side chains at C-11, and a cis or trans configuration at the C-8a,C-14a ring junction. Binding constants for the interaction with oligonucleotides and polynucleotides were determined by UV absorption and melting experiments. NMR experiments (NOE) revealed that the cis isomers, showing a slightly folded structure, preferentially bind to the minor groove of AT-rich oligomers. In contrast, the trans isomers prefer the CG-rich sequences, leading to cap-complexes with the isoquinoline moiety stacked at the top of the double helix, in agreement with the flatter shape, and with a preference for the 3'-terminals, as found for camptothecins. Models of the complexes were built up by molecular dynamics (MD) calculations, by using the inter-proton distances derived from the NOE values. Cytotoxicity assays against human Ewing sarcoma cell lines RD-ES and CAD-ES1 were performed.


Subject(s)
DNA/chemistry , Naphthyridines/chemistry , Naphthyridines/chemical synthesis , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Naphthyridines/pharmacology , Spectrometry, Mass, Electrospray Ionization
7.
J Pept Sci ; 11(8): 452-62, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15685714

ABSTRACT

The conformational properties of the homo oligomers of increasing chain length Boc-(Asn)(n)-NHMe (n = 2, 4, 5), (GlcNAc-beta-Asn)(n)-NHMe (n = 2, 4, 5, 8) and Boc-[GlcNAc(Ac)(3)-beta-Asn](n)-NHMe (n = 2, 4, 5) were studied by using NOE experiments and molecular dynamic calculations (MD). Sequential NOEs and medium range NOEs, including (i,i+2) interactions, were detected by ROESY experiments and quantified. The calculated inter-proton distances are longer than those characteristic of beta-turn secondary structures. Owing to the large conformational motions expected for linear peptides, MD simulations were performed without NMR constraints, with explicit water and by applying different treatments of the electrostatic interactions. In agreement with the NOE results, the simulations showed, for all peptides, the presence of both folded and unfolded structures. The existence of significant populations of beta-turn structures can be excluded for all the examined compounds, but two families of structures were more often recognized. The first one with sinusoidal or S-shaped forms, and another family of large turns together with some more extended conformations. Only the glycosylated pentapeptide shows in vacuo a large amount of structures with helical shaped form. The results achieved in water and in DMSO are compared and discussed, together with the effect of the glycosylation.


Subject(s)
Asparagine/chemistry , Oligopeptides/chemistry , Dipeptides/chemistry , Electron Spin Resonance Spectroscopy , Glycosylation , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Temperature
8.
Org Biomol Chem ; 2(4): 505-13, 2004 Feb 21.
Article in English | MEDLINE | ID: mdl-14770229

ABSTRACT

We report an NMR study on the interaction of topotecan (Tpt) and other camptothecins (Cpts) with several double helix and single strand oligonucleotides. The results obtained by (31)P NMR spectroscopy, nuclear Overhauser experiments (NOE) and molecular dynamics (MD) simulations show that Cpt drugs do not intercalate into the double helix, as suggested by many authors. Phosphorus NMR spectra indicated that no deformation occurs at any level of the phosphodiester backbone, while 2D NOESY experiments allowed the detection of several contacts between the aromatic protons of Cpts and those of the double helix. Models of the drug/oligonucleotide complexes, built on the basis of NOE data, show that the drug is located at the end of the double helix, by stacking the A and B rings with the guanine or cytidine of the terminal CG base pairs, with a preference for the 3[prime or minute]-terminal end sites. Cpts interact with double strand, as well as with single strand oligomers, as can be seen from the NMR shift variation observed on the drug protons; but this shielding effect cannot be an evidence of intercalation, as it is largely due to external non-specific interactions of the positively charged drug with the negatively charged ionic surface of the oligonucleotide. The molecular weight of one of the complexes was obtained from the correlation time value. The conformational behaviour of the DNA fragment d(CGTACG)(2) was studied by MD simulations on a ns time scale in the presence of water molecules and Na(+) ions. Different models were examined and the deformations induced on the phosphodiester backbone by molecules that are known to intercalate, were monitored by MD simulations.


Subject(s)
Camptothecin/chemistry , Nucleic Acid Conformation , Oligonucleotides/chemistry , Computer Simulation , Isomerism , Models, Molecular
9.
Bioorg Med Chem ; 11(4): 505-14, 2003 Feb 20.
Article in English | MEDLINE | ID: mdl-12538015

ABSTRACT

Berberine, an isoquinoline plant alkaloid, belongs to the structural class of protoberberines. Recently, the ability of these compounds to act as Topoisomerase I or II poisons, was related to the antitumor activity. The binding of protoberberins to DNA has been studied and the partial intercalation into the double helix has been considered responsible for their activity. We have studied the interaction of berberine with the double helix oligonucleotides d(AAGAATTCTT)(2), d(GCGATCGC)(2), d(CGTATACG)(2), d(CGTACG)(2), 5'-d(ACCTTTTTGATGT)-3'/5(ACATCAAAAAGGT)-3' and with the single strand 5'-d(ACATCAAAAAGGT)-3', by 1H, 31P NMR and UV spectroscopy. Phosphorus resonance experiments were performed to detect small conformational changes of the phosphoribose backbone, in the case that an intercalation process occurs. Our data reveal that berberine does not intercalate into the duplexes studied, and binds preferentially to AT rich sequences. The structure of the complex with d(AAGAATTCTT)(2) was determined by using proton 2D NOESY spectra, which allowed to obtain several NOE contacts between the drug and the nucleotide. Structural models were built up by Molecular Mechanics (MM) and Molecular Dynamics (MD) calculations, by using the inter-proton distances derived from the NOE values. Berberine results to be located in the minor groove, lying with the convex side on the helix groove and presenting the positively charged nitrogen atom close to the negative ionic surface of the oligomer. The large 1H chemical shifts variation, observed for the drug when it is added to the above duplexes, as well as to the single strand oligomer, was interpreted with non-specific ionic interactions. The binding constants were measured by UV and NMR spectroscopy. They are strongly affected by the ionic strength and by the self-association process, which commonly occurs with this type of drugs. A dimerisation constant was measured and the value was included in the calculations of the binding constants. The results obtained show that the non-specific ionic interactions represent the major contribution to the values of the binding constants. These parameters, as well as the protons chemical shift variation of the ligand, are thus not diagnostic for the identification of a drug/DNA complex.


Subject(s)
Antineoplastic Agents, Phytogenic/metabolism , Berberine/metabolism , Oligonucleotides/metabolism , Algorithms , Chemical Phenomena , Chemistry, Physical , DNA/metabolism , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Nucleic Acid Conformation , Phosphorus Isotopes , Protons , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...