Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(35): 24163-24167, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37614193

ABSTRACT

Correction for 'Increasing ion yield circular dichroism in femtosecond photoionisation using optimal control theory' by Manel Mondelo-Martell et al., Phys. Chem. Chem. Phys., 2022, 24, 9286-9297, https://doi.org/10.1039/D1CP05239J.

2.
J Chem Phys ; 157(9): 094108, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36075717

ABSTRACT

We report on quantum dynamical simulations of inter-chain exciton transport in a model of regioregular poly(3-hexylthiophene), rr-P3HT, at finite temperature using the Multi-Layer Multi-Configuration Time-Dependent Hartree method for a system of up to 63 electronic states and 180 vibrational modes. A Frenkel Hamiltonian of HJ aggregate type is used along with a reduced H-aggregate representation; electron-phonon coupling includes local high-frequency modes as well as anharmonic intermolecular modes. The latter are operative in mediating inter-chain transport by a mechanism of transient localization type. Strikingly, this mechanism is found to be of quantum coherent character and involves non-adiabatic effects. Using periodic boundary conditions, a normal diffusion regime is identified from the exciton mean-squared displacement, apart from early-time transients. Diffusion coefficients are found to be of the order of 3 × 10-3 cm2/s, showing a non-linear increase with temperature.

3.
Phys Chem Chem Phys ; 24(16): 9286-9297, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35411352

ABSTRACT

We investigate how optimal control theory can be used to improve Circular Dichroism (CD) signals for the A-band of fenchone measured via the photoionization yield upon further excitation. These transitions are electric dipole forbidden to first order, which translates into low population transfer to the excited state but allows for a clearer interplay between electric and magnetic transition dipole moments, which are of the same order of magnitude. Using a model including the electronic ground and excited A state as well as all permanent and transition multipole moments up to the electric quadrupole, we find that the absolute CD signal of randomly oriented molecules can be increased by a factor of 2.5 when using shaped laser pulses, with the anisotropy parameter g increasing from 0.06 to 1. We find that this effect is caused by the interference between the excitation pathways prompted by the different multipole moments of the molecule.

5.
J Chem Phys ; 147(8): 084103, 2017 Aug 28.
Article in English | MEDLINE | ID: mdl-28863521

ABSTRACT

Quantum confinement effects are known to affect the behavior of molecules adsorbed in nanostructured materials. In order to study these effects on the transport of a single molecule through a nanotube, we present a quantum dynamics study on the diffusion of H2 in a narrow (8,0) carbon nanotube in the low pressure limit. Transmission coefficients for the elementary step of the transport process are calculated using the flux correlation function approach and diffusion rates are obtained using the single hopping model. The different time scales associated with the motion in the confined coordinates and the motion along the nanotube's axis are utilized to develop an efficient and numerically exact approach, in which a diabatic basis describing the fast motion in the confined coordinate is employed. Furthermore, an adiabatic approximation separating the dynamics of confined and unbound coordinates is studied. The results obtained within the adiabatic approximation agree almost perfectly with the numerically exact ones. The approaches allow us to accurately study the system's dynamics on the picosecond time scale and resolve resonance structures present in the transmission coefficients. Resonance enhanced tunneling is found to be the dominant transport mechanism at low energies. Comparison with results obtained using transition state theory shows that tunneling significantly increases the diffusion rate at T < 120 K.

6.
J Phys Chem A ; 120(33): 6501-12, 2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27459476

ABSTRACT

We present quantum dynamics calculations of the diffusion constant of H2 and D2 along a single-walled carbon nanotube at temperatures between 50 and 150 K. We calculate the respective diffusion rates in the low-pressure limit by adapting well-known approaches and methods from the chemical dynamics field using two different potential energy surfaces to model the C-H interaction. Our results predict a usual kinetic isotope effect, with H2 diffusing faster than D2 in the higher temperature range but a reverse trend at temperatures below 50-70 K. These findings are consistent with experimental observation in similar systems and can be explained by the different effective size of both isotopes resulting from their different zero-point energy.

SELECTION OF CITATIONS
SEARCH DETAIL
...