Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
2.
Mol Psychiatry ; 26(2): 666-681, 2021 02.
Article in English | MEDLINE | ID: mdl-30953002

ABSTRACT

Mutations in AUTS2 are associated with autism, intellectual disability, and microcephaly. AUTS2 is expressed in the brain and interacts with polycomb proteins, yet it is still unclear how mutations in AUTS2 lead to neurodevelopmental phenotypes. Here we report that when neuronal differentiation is initiated, there is a shift in expression from a long isoform to a short AUTS2 isoform. Yeast two-hybrid screen identified the splicing factor SF3B1 as an interactor of both isoforms, whereas the polycomb group proteins, PCGF3 and PCGF5, were found to interact exclusively with the long AUTS2 isoform. Reporter assays showed that the first exons of the long AUTS2 isoform function as a transcription repressor, but the part that consist of the short isoform acts as a transcriptional activator, both influenced by the cellular context. The expression levels of PCGF3 influenced the ability of the long AUTS2 isoform to activate or repress transcription. Mouse embryonic stem cells (mESCs) with heterozygote mutations in Auts2 had an increase in cell death during in vitro corticogenesis, which was significantly rescued by overexpressing the human AUTS2 transcripts. mESCs with a truncated AUTS2 protein (missing exons 12-20) showed premature neuronal differentiation, whereas cells overexpressing AUTS2, especially the long transcript, showed increase in expression of pluripotency markers and delayed differentiation. Taken together, our data suggest that the precise expression of AUTS2 isoforms is essential for regulating transcription and the timing of neuronal differentiation.


Subject(s)
Cell Differentiation , Cytoskeletal Proteins , Neurons/cytology , Transcription Factors , Animals , Exons , Mice , Phenotype , Protein Isoforms/genetics , Transcription Factors/genetics
3.
Nat Commun ; 11(1): 5836, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203851

ABSTRACT

Several genes implicated in autism spectrum disorder (ASD) are chromatin regulators, including POGZ. The cellular and molecular mechanisms leading to ASD impaired social and cognitive behavior are unclear. Animal models are crucial for studying the effects of mutations on brain function and behavior as well as unveiling the underlying mechanisms. Here, we generate a brain specific conditional knockout mouse model deficient for Pogz, an ASD risk gene. We demonstrate that Pogz deficient mice show microcephaly, growth impairment, increased sociability, learning and motor deficits, mimicking several of the human symptoms. At the molecular level, luciferase reporter assay indicates that POGZ is a negative regulator of transcription. In accordance, in Pogz deficient mice we find a significant upregulation of gene expression, most notably in the cerebellum. Gene set enrichment analysis revealed that the transcriptional changes encompass genes and pathways disrupted in ASD, including neurogenesis and synaptic processes, underlying the observed behavioral phenotype in mice. Physiologically, Pogz deficiency is associated with a reduction in the firing frequency of simple and complex spikes and an increase in amplitude of the inhibitory synaptic input in cerebellar Purkinje cells. Our findings support a mechanism linking heterochromatin dysregulation to cerebellar circuit dysfunction and behavioral abnormalities in ASD.


Subject(s)
Autism Spectrum Disorder/etiology , Behavior, Animal , Brain/physiopathology , DNA Transposable Elements/genetics , Purkinje Cells/physiology , Transposases/metabolism , Animals , Autism Spectrum Disorder/genetics , Brain/anatomy & histology , Brain/embryology , Brain/growth & development , Cognition Disorders/genetics , Disease Models, Animal , Female , Gene Expression Regulation , HEK293 Cells , Humans , Learning , Male , Mice, Inbred ICR , Mice, Knockout , Microcephaly/genetics , Motor Activity/genetics , Neurogenesis/genetics , Pregnancy , Purkinje Cells/pathology , Social Behavior , Transcription, Genetic , Transposases/deficiency
4.
Hum Mol Genet ; 20(18): 3632-41, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21680558

ABSTRACT

Recent work has led to the identification of several susceptibility genes for autism spectrum disorder (ASD) and an increased appreciation of the importance of rare and de novo mutations. Some of the mutations may be very hard to detect using current strategies, especially if they are located in regulatory regions. We present a new approach to identify functional mutations that exploit the fact that many rare mutations disrupt the expression of genes from a single parental chromosome. The method incorporates measurement of the relative expression of the two copies of a gene across the genome using single nucleotide polymorphism arrays. Allelic expression has been successfully used to study common regulatory polymorphisms; however, it has not been implemented as a screening tool for rare mutation. We tested the potential of this approach by screening for monoallelic expression in lymphoblastoid cell lines derived from a small ASD cohort. After filtering regions shared across multiple samples, we identified genes showing monoallelic expression in specific ASD samples. Validation by quantitative sequencing demonstrated that the genes (or only part of them) are monoallelic expressed. The genes included both previously suspected risk factors for ASD and novel candidates. In one gene, named autism susceptibility candidate 2 (AUTS2), we identified a rare duplication that is likely to be the cause of monoallelic expression. Our results demonstrate the ability to identify rare regulatory mutations using genome-wide allelic expression screens, capabilities that could be expanded to other diseases, especially those with suspected involvement of rare dominantly acting mutations.


Subject(s)
Child Development Disorders, Pervasive/genetics , Genome-Wide Association Study/methods , Mutation , Polymorphism, Single Nucleotide , Child , Cohort Studies , Female , Genetic Variation , Genome, Human , Humans , Male
5.
Biopolymers ; 90(4): 526-36, 2008.
Article in English | MEDLINE | ID: mdl-18459171

ABSTRACT

Photoaffinity labeling is used to covalently attach ligands to macromolecules to determine their spatial arrangement and structure. Benzophenone (BP) groups are widely used for covalent photoaffinity labeling and for probing protein interactions. We developed bifunctional BP photoactivatable derivatives using three different general chemical approaches. In addition to the photoaffinity reactivity of the BP, these derivatives contain an additional group: A radioactive tracer for biological studies, or an N-ethylmaleimide group as an additional crosslinker, or a biotin group to be used during purification and characterization of probe-protein complexes using the high-affinity biotin-avidin interaction. A model series of photoaffinity labeling probes was synthesized based on the arbutin ligand. These compounds can be used as probes to study the arbutin binding site of microbial beta-glucoside transporters by photolabeling residues in its vicinity. The second functionality provides additional options for studying proteins and binding sites. The probes were developed using different methodologies: (i) a diazotation reaction; (ii) protecting group methodology; and (iii) solid-phase synthesis. These procedures are general and provide a simple and versatile approach for synthesizing bifunctional BP ligands, as demonstrated here on arbutin.


Subject(s)
Benzophenones/chemical synthesis , Glycosides/metabolism , Molecular Probes/chemical synthesis , Photoaffinity Labels/chemical synthesis , Photochemistry/methods , Benzophenones/chemistry , Biotin/chemical synthesis , Biotin/chemistry , Ethylmaleimide/chemical synthesis , Ethylmaleimide/chemistry , Molecular Probes/chemistry , Photoaffinity Labels/chemistry , Pyrans/chemical synthesis , Pyrans/chemistry
6.
J Bacteriol ; 189(23): 8601-15, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17905978

ABSTRACT

BglF catalyzes beta-glucoside phosphotransfer across the cytoplasmic membrane in Escherichia coli. In addition, BglF acts as a sugar sensor that controls expression of beta-glucoside utilization genes by reversibly phosphorylating the transcriptional antiterminator BglG. Thus, BglF can exist in two opposed states: a nonstimulated state that inactivates BglG by phosphorylation and a sugar-stimulated state that activates BglG by dephosphorylation and phosphorylates the incoming sugar. Sugar phosphorylation and BglG (de)phosphorylation are both catalyzed by the same residue, Cys24. To investigate the coordination and the structural requirements of the opposing activities of BglF, we conducted a genetic screen that led to the isolation of mutations that shift the balance toward BglG phosphorylation. We show that some of the mutants that are impaired in dephosphorylation of BglG retained the ability to catalyze the concurrent activity of sugar phosphotransfer. These mutations map to two regions in the BglF membrane domain that, based on their predicted topology, were suggested to be implicated in activity. Using in vivo cross-linking, we show that a glycine in the membrane domain, whose substitution impaired the ability of BglF to dephosphorylate BglG, is spatially close to the active-site cysteine located in a hydrophilic domain. This residue is part of a newly identified motif conserved among beta-glucoside permeases associated with RNA-binding transcriptional antiterminators. The phenotype of the BglF mutants could be suppressed by BglG mutants that were isolated by a second genetic screen. In summary, we identified distinct sites in BglF that are involved in regulating phosphate flow via the common active-site residue in response to environmental cues.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Amino Acid Substitution , Carbohydrate Metabolism , Gene Expression Regulation, Bacterial , Mutation , Phosphorylation , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...