Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Microbiol ; 23(3): e13283, 2021 03.
Article in English | MEDLINE | ID: mdl-33108050

ABSTRACT

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Subject(s)
Intercellular Junctions/metabolism , Peptide Hydrolases/metabolism , Protozoan Proteins/metabolism , Tight Junction Proteins/metabolism , Toxoplasma/physiology , Animals , Cadherins/metabolism , Claudin-1/metabolism , Cytoskeletal Proteins/metabolism , Dogs , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Hydrazones/pharmacology , Intercellular Junctions/ultrastructure , Madin Darby Canine Kidney Cells , Metalloproteases/metabolism , Movement , Naphthols/pharmacology , Occludin/metabolism , Toxoplasma/enzymology , Toxoplasma/pathogenicity , Zonula Occludens-1 Protein/metabolism
2.
Int J Mol Sci ; 21(17)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32824881

ABSTRACT

ß-dystroglycan (ß-DG) assembles with lamins A/C and B1 and emerin at the nuclear envelope (NE) to maintain proper nuclear architecture and function. To provide insight into the nuclear function of ß-DG, we characterized the interaction between ß-DG and emerin at the molecular level. Emerin is a major NE protein that regulates multiple nuclear processes and whose deficiency results in Emery-Dreifuss muscular dystrophy (EDMD). Using truncated variants of ß-DG and emerin, via a series of in vitro and in vivo binding experiments and a tailored computational analysis, we determined that the ß-DG-emerin interaction is mediated at least in part by their respective transmembrane domains (TM). Using surface plasmon resonance assays we showed that emerin binds to ß-DG with high affinity (KD in the nanomolar range). Remarkably, the analysis of cells in which DG was knocked out demonstrated that loss of ß-DG resulted in a decreased emerin stability and impairment of emerin-mediated processes. ß-DG and emerin are reciprocally required for their optimal targeting within the NE, as shown by immunofluorescence, western blotting and immunoprecipitation assays using emerin variants with mutations in the TM domain and B-lymphocytes of a patient with EDMD. In summary, we demonstrated that ß-DG plays a role as an emerin interacting partner modulating its stability and function.


Subject(s)
Dystroglycans/metabolism , Membrane Proteins/metabolism , Muscular Dystrophy, Emery-Dreifuss/metabolism , Nuclear Proteins/metabolism , Active Transport, Cell Nucleus , Animals , B-Lymphocytes/metabolism , Binding Sites , Cell Line , Cells, Cultured , Dystroglycans/chemistry , Dystroglycans/genetics , HeLa Cells , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Muscular Dystrophy, Emery-Dreifuss/genetics , Mutation , Nuclear Envelope/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Binding
3.
Int J Mol Sci ; 21(14)2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32674290

ABSTRACT

Nuclear ß-dystroglycan (ß-DG) is involved in the maintenance of nuclear architecture and function. Nonetheless, its relevance in defined nuclear processes remains to be determined. In this study we generated a C2C12 cell-based DG-null model using CRISPR-Cas9 technology to provide insights into the role of ß-DG on nuclear processes. Since DG-null cells exhibited decreased levels of lamin B1, we aimed to elucidate the contribution of DG to senescence, owing to the central role of lamin B1 in this pathway. Remarkably, the lack of DG enables C2C12 cells to acquire senescent features, including cell-cycle arrest, increased senescence-associated-ß-galactosidase activity, heterochromatin loss, aberrant nuclear morphology and nucleolar disruption. We demonstrated that genomic instability is one driving cause of the senescent phenotype in DG-null cells via the activation of a DNA-damage response associated with mitotic failure, as shown by the presence of multipolar mitotic spindles, which in turn induced the formation of micronuclei and γH2AX foci (DNA-damage marker), telomere shortening and p53/p21 upregulation. Altogether, these events might ultimately lead to premature senescence, impeding the replication of the damaged genome. In summary, we present evidence supporting a role for DG in protecting against senescence, through the maintenance of proper lamin B1 expression/localization and proper mitotic spindle organization.


Subject(s)
Cellular Senescence/genetics , Dystroglycans/genetics , Genomic Instability/genetics , Mitosis/genetics , Amino Acid Sequence , Animals , Base Sequence , Cell Cycle Checkpoints/genetics , Cell Line , Cell Nucleus/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage/genetics , Histones/genetics , Lamin Type B/genetics , Mice , Mice, Knockout , Spindle Apparatus/genetics , Telomere/genetics , Tumor Suppressor Protein p53/genetics , Up-Regulation/genetics , beta-Galactosidase/genetics
4.
EBioMedicine ; 47: 553-562, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31446083

ABSTRACT

BACKGROUND: Stem cell transplantation represents a potential therapeutic option for muscular dystrophies (MD). However, to date, most reports have utilized mouse models for recessive types of MD. Here we performed studies to determine whether myotonic dystrophy 1 (DM1), an autosomal dominant type of MD, could benefit from cell transplantation. METHODS: We injected human pluripotent stem (PS) cell-derived myogenic progenitors into the muscles of a novel mouse model combining immunodeficiency and skeletal muscle pathology of DM1 and investigated transplanted mice for engraftment as well as for the presence of RNA foci and alternative splicing pattern. FINDINGS: Engraftment was clearly observed in recipient mice, but unexpectedly, we detected RNA foci in donor-derived engrafted myonuclei. These foci proved to be pathogenic as we observed MBNL1 sequestration and abnormal alternative splicing in donor-derived transcripts. INTERPRETATION: It has been assumed that toxic CUG repeat-containing RNA forms foci in situ in the nucleus in which it is expressed, but these data suggest that CUG repeat-containing RNA may also exit the nucleus and traffic to other nuclei in the syncytial myofiber, where it can exert pathological effects. FUND: This project was supported by funds from the LaBonte/Shawn family and NIH grants R01 AR055299 and AR071439 (R.C.R.P.). R.M-G. was funded by CONACyT-Mexico (#394378).


Subject(s)
Cell Nucleus/genetics , Muscle, Skeletal/metabolism , Myotonic Dystrophy/genetics , RNA/genetics , Alternative Splicing , Animals , Cell Nucleus/metabolism , Disease Models, Animal , Immunocompromised Host , Mice , Muscle Cells/cytology , Muscle Cells/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA/administration & dosage
5.
Sci Rep ; 8(1): 17785, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30531996

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 7(1): 9906, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852008

ABSTRACT

ß-Dystroglycan (ß-DG) is a transmembrane protein with critical roles in cell adhesion, cytoskeleton remodeling and nuclear architecture. This functional diversity is attributed to the ability of ß-DG to target to, and conform specific protein assemblies at the plasma membrane (PM) and nuclear envelope (NE). Although a classical NLS and importin α/ß mediated nuclear import pathway has already been described for ß-DG, the intracellular trafficking route by which ß-DG reaches the nucleus is unknown. In this study, we demonstrated that ß-DG undergoes retrograde intracellular trafficking from the PM to the nucleus via the endosome-ER network. Furthermore, we provided evidence indicating that the translocon complex Sec61 mediates the release of ß-DG from the ER membrane, making it accessible for importins and nuclear import. Finally, we show that phosphorylation of ß-DG at Tyr890 is a key stimulus for ß-DG nuclear translocation. Collectively our data describe the retrograde intracellular trafficking route that ß-DG follows from PM to the nucleus. This dual role for a cell adhesion receptor permits the cell to functionally connect the PM with the nucleus and represents to our knowledge the first example of a cell adhesion receptor exhibiting retrograde nuclear trafficking and having dual roles in PM and NE.

7.
J Cell Biochem ; 116(12): 2755-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25959029

ABSTRACT

α-Dystrobrevin (α-DB) is a cytoplasmic component of the dystrophin-associated complex involved in cell signaling; however, its recently revealed nuclear localization implies a role for this protein in the nucleus. Consistent with this, we demonstrated, in a previous work that α-DB1 isoform associates with the nuclear lamin to maintain nuclei morphology. In this study, we show the distribution of the α-DB2 isoform in different subnuclear compartments of N1E115 neuronal cells, including nucleoli and Cajal bodies, where it colocalizes with B23/nucleophosmin and Nopp140 and with coilin, respectively. Recovery in a pure nucleoli fraction undoubtedly confirms the presence of α-DB2 in the nucleolus. α-DB2 redistributes in a similar fashion to that of fibrillarin and Nopp140 upon actinomycin-mediated disruption of nucleoli and to that of coilin after disorganization of Cajal bodies through ultraviolet-irradiation, with relocalization of the proteins to the corresponding reassembled structures after cessation of the insults, which implies α-DB2 in the plasticity of these nuclear bodies. That localization of α-DB2 in the nucleolus is physiologically relevant is demonstrated by the fact that downregulation of α-DB2 resulted in both altered nucleoli structure and decreased levels of B23/nucleophosmin, fibrillarin, and Nopp140. Since α-DB2 interacts with B23/nucleophosmin and overexpression of the latter protein favors nucleolar accumulation of α-DB2, it appears that targeting of α-DB2 to the nucleolus is dependent on B23/nucleophosmin. In conclusion, we show for the first time localization of α-DB2 in nucleoli and Cajal bodies and provide evidence that α-DB2 is involved in the structure of nucleoli and might modulate nucleolar functions.


Subject(s)
Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Coiled Bodies/metabolism , Dystrophin-Associated Proteins/metabolism , Neuropeptides/metabolism , Cell Nucleolus/ultrastructure , Cell Nucleus/ultrastructure , Chromosomal Proteins, Non-Histone/metabolism , Coiled Bodies/ultrastructure , HeLa Cells , Humans , Neurons/metabolism , Nuclear Proteins/metabolism , Nucleophosmin
SELECTION OF CITATIONS
SEARCH DETAIL