Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(47): 16470-16480, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36318661

ABSTRACT

Exceptional surface enhanced Raman scattering (SERS) can be achieved by on-demand mechanisms mediated by the formation of three-dimensional (3D) network supporting hotspots. Herein, a deep eutectic solvent (DES) is used to fabricate plasmonic aerogels as sustainable SERS substrates consisting of different gold nanoparticle (AuNP) heterostructures synthesized in the presence of cellulose nanocrystals (CNCs). This analytical approach is based on the AuNPs 3D arrangement within the CNC matrix, where the transient inter-CNCs interactions collapse after loading with the analyte aqueous solution, forming hotspots on demand. Theoretical calculations support the on-demand SERS mechanism, which consists of the hotspot formation by bringing the AuNPs closer upon activation with the liquid sample loading. To evaluate the plasmonic aerogel performance as a sensing platform, the organophosphorus pesticides edifenphos and parathion were tested in rice and tea extracts. Also, the detection of Methylene Blue in fish muscle extract resulted in a detection limit of 9.8 nM. The results demonstrate that the 3D plasmonic aerogel exhibits significantly higher SERS enhancement and sensitivity when compared to conventional 2D SERS substrates. The use of a green designer solvent, biobased ingredients, and the introduction of on-demand SERS-based sensing pave the way for further developments in the analysis of liquid samples within a sustainable framework.


Subject(s)
Metal Nanoparticles , Pesticides , Animals , Gold/chemistry , Metal Nanoparticles/chemistry , Deep Eutectic Solvents , Solvents , Organophosphorus Compounds , Spectrum Analysis, Raman/methods , Cellulose/chemistry
2.
J Forensic Leg Med ; 76: 102077, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33171383

ABSTRACT

The 14C analysis of permanent teeth employing nuclear techniques has a direct application in Forensic Sciences since teeth are the hardest part of the human body and can survive natural decay or extreme conditions. After the first Accelerator Mass Spectrometry Laboratory AMS-LEMA at UNAM, our research group is interested in reproducing 14C analysis on teeth as other countries to estimate age in the Mexican population samples. One of the main goals of this exploratory study is to know the best methodology considering relevant biological factors based on differences in tissues (enamel and dentin) that allows us to know the year of birth through the 14C concentration comparing the yield between 14C analyses from carbonate in enamel and collagen in dentin. In this study, Accelerator Mass Spectrometry (AMS) has been performed in 22 contemporary teeth samples (each one donated from 1 different adult), participating 22 individuals by informed consent to enable a new tool and improve forensic practices in Mexico. Carbon is extracted, converted to graphite, and pressed into a cathode. The sample is taken to an AMS system, where carbon isotopes are separated, counted, and the 14C/12C and 13C/12C ratios determined. Our results for standards and teeth samples from Mexican people are in good agreement with the expected values; they are also useful to set up the best conditions for studies in dentin and enamel. However, this is a destructive technique for dental organs; it is not suitable for individuals born previous 1950. New challenges in sample preparation processes are to be solved to take advantage of the nuclear techniques developed in the last 50 years and make new contributions to society.


Subject(s)
Age Determination by Teeth/methods , Carbon Radioisotopes , Radiometric Dating , Collagen/chemistry , Dental Enamel/chemistry , Dentin/chemistry , Humans , Mass Spectrometry , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...