Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Allergy ; 75(4): 872-881, 2020 04.
Article in English | MEDLINE | ID: mdl-31557317

ABSTRACT

BACKGROUND: Immunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen-specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2-4 monthly administrations. Here, we investigate the ability of this technology to provide long-term modulation of allergy in a murine model of cow's milk allergy. METHODS: Six weeks after sensitization to bovine casein, mice received four, monthly IN immunizations with nanoemulsion formulated with casein. Protection from casein challenge was assessed at 4 and 16 weeks after the final vaccine administration. RESULTS: The NE vaccine significantly blunted the physiological responses to allergen challenge, and this effect persisted for at least 16 weeks. The protection from challenge was associated with the suppression of casein-specific Th2 immunity and induced Th1 and Th17 cytokines as well as induction of IL-10. Of interest, while immunized animals showed significantly decreased Th2 cytokine responses, cow's milk-specific IgE remained elevated in the serum at levels associated with reactivity in control sensitized animals. Protection was associated with suppressed mast cell activation and markedly reduced mast cell infiltration into the small intestine. CONCLUSION: The sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype in a persistent manner different from traditional desensitization, and this leads to long-term suppressive effects on allergic disease without eliminating serum IgE.


Subject(s)
Milk Hypersensitivity , Vaccines , Animals , Cattle , Disease Models, Animal , Female , Immunity , Immunomodulation , Mice , Milk Hypersensitivity/prevention & control , Nanostructures
2.
J Allergy Clin Immunol ; 141(6): 2121-2131, 2018 06.
Article in English | MEDLINE | ID: mdl-29655584

ABSTRACT

BACKGROUND: Immunotherapy for food allergies involves progressive increased exposures to food that result in desensitization to food allergens in some subjects but not tolerance to the food. Therefore new approaches to suppress allergic immunity to food are necessary. Previously, we demonstrated that intranasal immunization with a nanoemulsion (NE) adjuvant induces robust mucosal antibody and TH17-polarized immunity, as well as systemic TH1-biased cellular immunity with suppression of pre-existing TH2-biased immunity. OBJECTIVE: We hypothesized that immunization with food in conjunction with the nanoemulsion adjuvant could lead to modulation of allergic reactions in food allergy by altering pre-existing allergic immunity and enhancing mucosal immunity. METHODS: Mice were sensitized to peanut with aluminum hydroxide or cholera toxin. The animals were then administered 3 monthly intranasal immunizations with peanut in the nanoemulsion adjuvant or saline. Mice were then challenged with peanut to examine allergen reactivity. RESULTS: The NE intranasal immunizations resulted in marked decreases in TH2 cytokine, IgG1, and IgE levels, whereas TH1 and mucosal TH17 immune responses were increased. After allergen challenge, these mice showed significant reductions in allergic hypersensitivity. Additionally, the NE immunizations significantly increased antigen-specific IL-10 production and regulatory T-cell counts, and the protection induced by NE was dependent in part on IL-10. Control animals immunized with intranasal peanut in saline had no modulation of their allergic response. CONCLUSIONS: NE adjuvant-mediated induction of mucosal TH17 and systemic TH1-biased immunity can suppress TH2-mediated allergy through multiple mechanisms and protect against anaphylaxis. These results suggest the potential therapeutic utility of this approach in the setting of food allergy.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Desensitization, Immunologic/methods , Peanut Hypersensitivity/immunology , Th2 Cells/immunology , Administration, Intranasal , Animals , Disease Models, Animal , Emulsions , Female , Mice , Nanoconjugates/administration & dosage , Th2 Cells/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...