Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Psychol Hum Percept Perform ; 42(9): 1443-65, 2016 09.
Article in English | MEDLINE | ID: mdl-27123676

ABSTRACT

In this article, we examine whether dimensions comprising the entirety of an object (e.g., size and saturation) are processed independently or pooled into a single whole-object representation. These whole-object features, while notionally separable, sometimes show empirical effects consistent with integrality. A recently proposed theoretical distinction between integral and separable dimensions that emphasizes the time course of information processing, can be used to differentiate whether whole-object features are processed independently, either in serial or in parallel, or pooled into a single coactive process (see, e.g., Little, Nosofsky, Donkin, & Denton, 2013). The current research examines this theoretical distinction in the processing of 3 sets of whole-object-featured stimuli that vary on any pair of the dimensions of saturation, size, and orientation. We found that a mixture of serial and parallel architectures underlies the processing of whole-object features. These results indicate that whole-object features are processed independently. (PsycINFO Database Record


Subject(s)
Psychomotor Performance/physiology , Space Perception/physiology , Visual Perception/physiology , Adult , Color Perception/physiology , Humans , Size Perception/physiology , Young Adult
2.
Hepat Mon ; 14(1): e14678, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24497881

ABSTRACT

BACKGROUND: Detectable HCV-specific cellular immune responses in HCV antibody and RNA negative people who inject drugs (PWID) raise the question of whether some are resistant to HCV infection. Immune responses from people who have been exposed to hepatitis C virus (HCV) and remain anti-HCV negative are of interest for HCV vaccine development; however, limited research addresses this area. OBJECTIVES: In a cohort of HCV antibody and RNA negative PWID, we assessed whether the presence of HCV-specific IFN-γ responses or genetic associations provide any evidence of protection from HCV infection. PATIENTS AND METHODS: One hundred and ninety-eight participants were examined longitudinally for clinical, behavioral, social, environmental and genetic characteristics (IFNL3 genotype [formally IL-28B] and HLA type). Sixty-one of the 198 participants were HCV antibody and RNA negative, with 53 able to be examined longitudinally for HCV-specific IFN-γ ELISpot T cell responses. RESULTS: Ten of the 53 HCV antibody and RNA negative participants had detectable HCV-specific IFN-γ responses at baseline (18%). The magnitude of IFN-γ responses averaged 131 +/- 96 SFC/106 PBMC and the breadth was mean 1 +/- 1 pool positive. The specificity of responses were mainly directed to E2, NS4b and NS5b. Participants with (10) and without (43) HCV-specific IFN-γ responses did not differ in behavioral, clinical or genetic characteristics (P > 0.05). There was a larger proportion sharing needles (with 70%, without 49%, P = 0.320) and a higher incidence of HCV (with 35.1 per 100 py, 95% CI 14.6, 84.4, without 16.0 per 100 py, 95% CI 7.2, 35.6, P = 0.212) in those with IFN-γ responses, although not statistically significant. Half the participants with baseline IFN-γ responses became HCV RNA positive (5/10), with one of these participants spontaneously clearing HCV. The spontaneous clearer had high magnitude and broad Th1 responses, favorable IFNL3 genotype and favorable HLA types. CONCLUSIONS: This study demonstrated the detection of HCV-specific IFN-γ responses in HCV antibody and RNA negative individuals, with a tendency for HCV-specific IFN-γ responses to be associated with HCV exposure. The potential role of HCV-specific IFN-γ responses in those who remained HCV RNA negative is of value for the development of novel HCV therapeutics.

3.
J Immunol ; 186(2): 901-12, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21160049

ABSTRACT

Hepatitis C virus (HCV) infection causes significant morbidity and mortality worldwide. T cells play a central role in HCV clearance; however, there is currently little understanding of whether the disease outcome in HCV infection is influenced by the choice of TCR repertoire. TCR repertoires used against two immunodominant HCV determinants--the highly polymorphic, HLA-B*0801 restricted (1395)HSKKKCDEL(1403) (HSK) and the comparatively conserved, HLA-A*0101-restricted, (1435)ATDALMTGY(1443) (ATD)--were analyzed in clearly defined cohorts of HLA-matched, HCV-infected individuals with persistent infection and HCV clearance. In comparison with ATD, TCR repertoire selected against HSK was more narrowly focused, supporting reports of mutational escape in this epitope, in persistent HCV infection. Notwithstanding the Ag-driven divergence, T cell repertoire selection against either Ag was comparable in subjects with diverse disease outcomes. Biased T cell repertoires were observed early in infection and were evident not only in persistently infected individuals but also in subjects with HCV clearance, suggesting that these are not exclusively characteristic of viral persistence. Comprehensive clonal analysis of Ag-specific T cells revealed widespread use of public TCRs displaying a high degree of predictability in TRBV/TRBJ gene usage, CDR3 length, and amino acid composition. These public TCRs were observed against both ATD and HSK and were shared across diverse disease outcomes. Collectively, these observations indicate that repertoire diversity rather than particular Vß segments are better associated with HCV persistence/clearance in humans. Notably, many of the anti-HCV TCRs switched TRBV and TRBJ genes around a conserved, N nucleotide-encoded CDR3 core, revealing TCR sequence mosaicism as a potential host mechanism to combat this highly variant virus.


Subject(s)
Hepacivirus/immunology , Hepatitis Antigens/biosynthesis , Hepatitis C, Chronic/immunology , Receptors, Antigen, T-Cell/metabolism , Amino Acid Sequence , Base Sequence , Epitopes, T-Lymphocyte/biosynthesis , Genetic Variation/immunology , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Hepatitis Antigens/metabolism , Hepatitis Antigens/physiology , Hepatitis C, Chronic/metabolism , Humans , Immune Evasion , Immunodominant Epitopes/immunology , Molecular Sequence Data
4.
Immunol Cell Biol ; 87(6): 464-72, 2009.
Article in English | MEDLINE | ID: mdl-19434069

ABSTRACT

To analyse the immune correlates in a setting of recurrent exposure to hepatitis C virus (HCV), we studied T(CD8) responses in injecting drug users (IDUs) with different disease outcomes. Ex vivo HCV-specific T(CD8) responses assessed by interferon-gamma (IFNgamma) enzyme-linked immunospot (ELISPOT) were comparable in human lymphocyte antigen (HLA)-matched IDUs with spontaneous HCV clearance or persistent infection. A detailed characterization of these T(CD8) cells in age and HLA-matched IDUs demonstrated that HCV clearance and protection from reinfection correlated with HCV-specific T(CD8) cells that could proliferate in vitro, possessed cytotoxic potential and produced IFNgamma and tumour-necrosis factor-alpha, rather than with the circulating frequency of responding T(CD8) cells determined ex vivo. While validating the importance of multifunctional T(CD8) in mediating protection in IDUs with recurrent exposure to HCV our findings highlight that the magnitude and/or breadth of HCV-specific T(CD8) determined in ex vivo ELISPOT may not be the sole determinant of protection especially in a setting of recurrent exposure.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Hepacivirus/immunology , Hepatitis C/immunology , Adolescent , Adult , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Proliferation , Drug Users , Environmental Exposure , Female , HLA Antigens/metabolism , Hepacivirus/pathogenicity , Hepatitis C/pathology , Hepatitis C/prevention & control , Hepatitis C/transmission , Humans , Interferon-gamma/metabolism , Male , Middle Aged , Remission, Spontaneous , Secondary Prevention , Tumor Necrosis Factor-alpha/metabolism
5.
Clin Immunol ; 128(3): 329-39, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18524682

ABSTRACT

Hepatitis C virus (HCV)-specific cytotoxic T lymphocytes (CTLs) play an important role in HCV clearance. The frequency of HCV-specific T(CD8) in peripheral blood of HCV-infected donors is very low and HCV cannot be cultivated for reinfection of antigen presenting cells, making it difficult to detect T(CD8) of broad HCV specificities from peripheral blood mononuclear cells (PBMCs). We have developed a recombinant adenoviral system that efficiently reactivates and expands HCV-specific CTLs from PBMCs of HCV-infected donors. Replication-incompetent adenoviruses expressing individual HCV proteins (core and NS3) were produced and PBMCs from HCV-infected donors were transduced with these recombinant adeno-HCV constructs to stimulate HCV-specific CTL populations. T cells expanded from adeno-HCV stimulated cultures were potent producers of HCV-specific IFN-gamma and TNF-alpha and efficiently lysed target cells pulsed with HCV peptides. These constructs could stimulate T(CD8) directed towards multiple HCV peptides while preserving the determinant hierarchy. This approach therefore overcomes some of the shortcomings of the selective expansion of CTLs with peptide-based vaccine strategies. These findings provide an effective approach for the expansion of HCV-specific CTLs from PBMCs of HCV-infected patients and have potential for immunotherapeutic/vaccine development.


Subject(s)
Adenoviridae/genetics , Cytokines/immunology , Hepacivirus/immunology , Hepatitis C Antigens/immunology , Hepatitis C, Chronic/immunology , T-Lymphocytes, Cytotoxic/immunology , Adult , Capsid Proteins/genetics , Cells, Cultured , Cytokines/analysis , Cytotoxicity, Immunologic , Genetic Vectors , Hepatitis C, Chronic/virology , Humans , Lymphocyte Activation , Middle Aged , Transduction, Genetic , Viral Hepatitis Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...