Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 96(3-4): 371-5, 1998 Mar.
Article in English | MEDLINE | ID: mdl-24710874

ABSTRACT

The amplified fragment length polymorphism (AFLP) technique was used to isolate DNA sequences present in the euploid wheat Chinese Spring but not in the Chinese Spring ph1b mutant (which has a deletion of the Ph1 gene, a suppressor of homoeologous chromosome pairing). The polymorphic DNA fragments identified by AFLP were then cloned, sequenced, and used to design two primer pairs. These primers were used in a PCR-based assay to specifically amplify products from the Chinese Spring euploid but not from the ph1b mutant. This PCR assay can be carried out from extracted genomic DNA or directly from alkaline-treated wheat leaves, and the reaction products can be scored on a plus-minus basis, making the screening amenable to automation. The reliability of the assay was tested using a F1-derived doubled-haploid population of 55 lines which segregate for the ph1b deletion. This PCR-screening technique is less time and labour consuming, and more accurate and reliable, than cytologically based conventional methods.

2.
Nucleic Acids Res ; 23(14): 2724-8, 1995 Jul 25.
Article in English | MEDLINE | ID: mdl-7651833

ABSTRACT

DNA markers distribute over large chromosomal regions exhibit conservation of order (collinearity) in different cereal species, but it is not known whether this is maintained on a finer scale, i.e. < or = 2 cM. To address this, sets of two or more genetically linked DNA markers were localised to yeast artificial chromosomes containing rice DNA inserts. Linkage analysis of these DNA markers in barley revealed complete correspondence with their genetic order in rice, the distance between linked sequences on rice chromosomes being < 1.6 cM or < or = 1 + 10(6) bp (1 Mb). Thus, DNA markers separated in this range are collinear in rice, barley and, by inference, other members of the Triticeae. These results are discussed with respect to the use of rice as a key system for the isolation of cereal genes.


Subject(s)
DNA, Plant/genetics , Edible Grain/genetics , Genome, Plant , Oryza/genetics , Base Sequence , Chromosome Mapping , Chromosomes, Artificial, Yeast , Conserved Sequence , Genetic Linkage , Genetic Markers , Hordeum/genetics , Species Specificity
3.
Mol Gen Genet ; 245(3): 349-54, 1994 Nov 01.
Article in English | MEDLINE | ID: mdl-7816045

ABSTRACT

A family of related sequences associated with (TTTAGGG)n repeats has been cloned from the wheat cultivar Chinese Spring. These sequences reveal a high level of polymorphism between wheat varieties when used as restriction fragment length polymorphism (RFLP) probes. Although this family of sequences contains motifs homologous to the repeats in the telomeres of wheat, they are located at interstitial sites on wheat chromosomes.


Subject(s)
Chromosomes , DNA, Plant , Repetitive Sequences, Nucleic Acid , Triticum/genetics , Blotting, Southern , Cloning, Molecular , Polymorphism, Restriction Fragment Length , Telomere
4.
Theor Appl Genet ; 84(5-6): 739-46, 1992 Aug.
Article in English | MEDLINE | ID: mdl-24201368

ABSTRACT

A library of wheat genomic DNA HpaII tiny fragments (HTF), sized below 500 bp, has been constructed. Of the clones in the library 80% belong to the single/low-copy category, while 12% of the clones are nuclear repetitive sequences and 8% originate from the chloroplast and mitochondrial DNA. This result shows a substantial enrichment in the single/low-copy sequences of the wheat genome, which contains at least 80% repetitive sequences. Twenty-nine random single/lowcopy clones were analysed further for wheat chromosome location, cross-hybridisation to barley DNA and their association with rare-cutting, C-methylation-sensitive restriction sites. The results show that the HTF clones are associated more frequently than expected with NotI, MluI, NruI and PstI sites in wheat and barley genomic DNA. The 12% repetitive fraction of the clones contain both moderately and highly repetitive sequences, but no tandemly repeated sequences. The level of enrichment for single/low-copy sequences indicates that libraries of this type are a valuable source of probes for RFLP mapping. In addition, the close association of the HTF clones with rare-cutting restriction enzyme sites ensures that HTF clones will have a useful role in the construction of long-range physical maps in wheat.

SELECTION OF CITATIONS
SEARCH DETAIL
...