Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Am J Cancer Res ; 2(1): 93-103, 2012.
Article in English | MEDLINE | ID: mdl-22206048

ABSTRACT

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, with a poor response to chemotherapy and low survival rate. This unfavorable treatment response is likely to derive from both late diagnosis and from complex, incompletely understood biology, and heterogeneity among NSCLC subtypes. To define the relative contributions of major cellular pathways to the biogenesis of NSCLC and highlight major differences between NSCLC subtypes, we studied the molecular signatures of lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), based on analysis of gene expression and comparison of tumor samples with normal lung tissue. Our results suggest the existence of specific molecular networks and subtype-specific differences between lung ADC and SCC subtypes, mostly found in cell cycle, DNA repair, and metabolic pathways. However, we also observed similarities across major gene interaction networks and pathways in ADC and SCC. These data provide a new insight into the biology of ADC and SCC and can be used to explore novel therapeutic interventions in lung cancer chemoprevention and treatment.

2.
Cancer Res ; 71(7): 2476-87, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21459804

ABSTRACT

More than one million prostate biopsies are performed in the United States every year. A failure to find cancer is not definitive in a significant percentage of patients due to the presence of equivocal structures or continuing clinical suspicion. We have identified gene expression changes in stroma that can detect tumor nearby. We compared gene expression profiles of 13 biopsies containing stroma near tumor and 15 biopsies from volunteers without prostate cancer. About 3,800 significant expression changes were found and thereafter filtered using independent expression profiles to eliminate possible age-related genes and genes expressed at detectable levels in tumor cells. A stroma-specific classifier for nearby tumor was constructed on the basis of 114 candidate genes and tested on 364 independent samples including 243 tumor-bearing samples and 121 nontumor samples (normal biopsies, normal autopsies, remote stroma, as well as stroma within a few millimeters of tumor). The classifier predicted the tumor status of patients using tumor-free samples with an average accuracy of 97% (sensitivity = 98% and specificity = 88%) whereas classifiers trained with sets of 100 randomly generated genes had no diagnostic value. These results indicate that the prostate cancer microenvironment exhibits reproducible changes useful for categorizing the presence of tumor in patients when a prostate sample is derived from near the tumor but does not contain any recognizable tumor.


Subject(s)
Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , RNA, Neoplasm/biosynthesis , Aged , Aged, 80 and over , Biopsy , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Neoplasm/genetics , Reproducibility of Results , Stromal Cells/pathology , Stromal Cells/physiology
3.
Genes Cancer ; 2(9): 870-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22593799

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with a high rate of proliferation and metastasis, as well as poor prognosis for advanced-stage disease. Although TNBC was previously classified together with basal-like and BRCA1/2-related breast cancers, genomic profiling now shows that there is incomplete overlap, with important distinctions associated with each subtype. The biology of TNBC is still poorly understood; therefore, to define the relative contributions of major cellular pathways in TNBC, we have studied its molecular signature based on analysis of gene expression. Comparisons were then made with normal breast tissue. Our results suggest the existence of molecular networks in TNBC, characterized by explicit alterations in the cell cycle, DNA repair, nucleotide synthesis, metabolic pathways, NF-κB signaling, inflammatory response, and angiogenesis. Moreover, we also characterized TNBC as a cancer of mixed phenotypes, suggesting that TNBC extends beyond the basal-like molecular signature and may constitute an independent subtype of breast cancer. The data provide a new insight into the biology of TNBC.

4.
Anticancer Drugs ; 20(8): 682-92, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19606018

ABSTRACT

Belinostat is a hydroxamate-type histone deactylase inhibitor (HDACi), which has recently entered phase I and II clinical trials. Microarray-based analysis of belinostat-treated cell lines showed an impact on genes associated with the G2/M phase of the cell cycle and downregulation of the aurora kinase pathway. Expression of 25 dysregulated genes was measured in eight differentially sensitive cell lines using a novel high-throughput assay that combines multiplex reverse transcriptase-PCR and fluorescence capillary electrophoresis. Sensitivity to belinostat and the magnitude of changes in overall gene modulation were significantly correlated. A belinostat-gene profile was specific for HDACi in three cell lines when compared with equipotent concentrations of four mechanistically different chemotherapeutic agents: 5-fluorouracil, cisplatin, paclitaxel, and thiotepa. Belinostat- and trichostatin A (HDACi)-induced gene responses were highly correlated with each other, but not with the limited changes in response to the other non-HDACi agents. Moreover, belinostat treatment of mice bearing human xenografts showed that the preponderance of selected genes were also modulated in vivo, more extensively in a drug-sensitive tumor than a more resistant model. We have demonstrated a gene signature that is selectively regulated by HDACi when compared with other clinical agents allowing us to distinguish HDACi responses from those related to other mechanisms.


Subject(s)
Enzyme Inhibitors/pharmacology , Gene Expression Profiling , Histone Deacetylase Inhibitors , Hydroxamic Acids/pharmacology , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents/pharmacology , Aurora Kinases , Cell Cycle/drug effects , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Chromosomal Proteins, Non-Histone/genetics , Down-Regulation/genetics , Enzyme Inhibitors/therapeutic use , Female , Gene Expression/drug effects , Gene Expression/genetics , Guanine Nucleotide Exchange Factors/genetics , HCT116 Cells , Humans , Hydroxamic Acids/therapeutic use , Male , Mice , Mice, Inbred Strains , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Sulfonamides , Up-Regulation/genetics , ran GTP-Binding Protein/genetics
5.
Proc Natl Acad Sci U S A ; 104(47): 18648-53, 2007 Nov 20.
Article in English | MEDLINE | ID: mdl-18000037

ABSTRACT

The cell-mediated immune profile induced by a recombinant DNA vaccine was assessed in the simian/HIV (SHIV) and macaque model. The vaccine strategy included coimmunization of a DNA-based vaccine alone or in combination with an optimized plasmid encoding macaque IL-15 (pmacIL-15). We observed strong induction of vaccine-specific IFN-gamma-producing CD8(+) and CD4(+) effector T cells in the vaccination groups. Animals were subsequently challenged with 89.6p. The vaccine groups were protected from ongoing infection, and the IL-15 covaccinated group showed a more rapidly controlled infection than the group treated with DNA vaccine alone. Lymphocytes isolated from the group covaccinated with pmacIL-15 had higher cellular proliferative responses than lymphocytes isolated from the macaques that received SHIV DNA alone. Vaccine antigen activation of lymphocytes was also studied for a series of immunological molecules. Although mRNA for IFN-gamma was up-regulated after antigen stimulation, the inflammatory molecules IL-8 and MMP-9 were down-regulated. These observed immune profiles are potentially reflective of the ability of the different groups to control SHIV replication. This study demonstrates that an optimized IL-15 immune adjuvant delivered with a DNA vaccine can impact the cellular immune profile in nonhuman primates and lead to enhanced suppression of viral replication.


Subject(s)
Immunization , Interleukin-15/immunology , Macaca/immunology , Plasmids/genetics , Retroviridae Proteins/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/immunology , Animals , Cell Proliferation , Gene Expression Regulation , Gene Products, gag/immunology , Humans , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-15/genetics , Lymph Nodes/immunology , Lymph Nodes/virology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/classification , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Virus Replication
6.
J Mol Diagn ; 9(1): 80-8, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17251339

ABSTRACT

The small round blue cell tumors of childhood, which include neuroblastoma, rhabdomyosarcoma, non-Hodgkin's lymphoma, and the Ewing's family of tumors, are so called because of their similar appearance on routine histology. Using cDNA microarray gene expression profiles and artificial neural networks (ANNs), we previously identified 93 genes capable of diagnosing these cancers. Using a subset of these, together with some additional genes (total 39), we developed a multiplex polymerase chain reaction (PCR) assay to diagnose these cancer types. Blinded testing of 96 new samples (26 Ewing's family of tumors, 29 rhabdomyosarcomas, 24 neuroblastomas, and 17 lymphomas) using ANNs in a complete leave-one-out analysis demonstrated that all except one sample were accurately diagnosed as their respective category. Moreover, using an ANN-based gene minimization strategy in a separate analysis, we found that the top 31 genes could correctly diagnose all 96 tumors. Our results suggest that this molecular test based on a multiplex PCR reaction may assist the physician in the rapid confirmation of the diagnosis of these cancers.


Subject(s)
Lymphoma/genetics , Molecular Diagnostic Techniques/methods , Neuroblastoma/genetics , Reverse Transcriptase Polymerase Chain Reaction/methods , Rhabdomyosarcoma/genetics , Sarcoma, Ewing/genetics , Cluster Analysis , DNA Primers , Diagnosis, Differential , Humans , Neural Networks, Computer
7.
Int J Toxicol ; 25(2): 85-94, 2006.
Article in English | MEDLINE | ID: mdl-16597547

ABSTRACT

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists of the thiazolidinedione family are used for the treatment of type 2 diabetes mellitus due to their ability to reduce glucose and lipid levels in patients with this disease. Three thiazolidinediones that were approved for treatment are Rezulin (troglitazone), Avandia (rosiglitazone), and Actos (pioglitazone). Troglitazone was withdrawn from the market due to idiosyncratic drug toxicity. Rosiglitazone and pioglitazone are still on the market for the treatment of type 2 diabetes. The authors present data from a gene expression screen that compares the impact these three compounds have in rats, in rat hepatocytes, and in the clone 9 rat liver cell line. The authors monitored the changes in expression in multiple genes, including those related to xenobiotic metabolism, proliferation, DNA damage, oxidative stress, apoptosis, and inflammation. Compared to the other two compounds, troglitazone had a significant impact on many of the pathways monitored in vitro although no major perturbation was detected in vivo. The changes detected predict not only general toxicity but potential mechanisms of toxicity. Based on gene expression analysis, the authors propose there is not just one but multiple ways troglitazone could be toxic, depending on a patient's environment and genetic makeup, including immune response-related toxicity.


Subject(s)
Chromans/toxicity , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hypoglycemic Agents/toxicity , Thiazolidinediones/toxicity , Animals , Cell Line , Cells, Cultured , Gene Expression Profiling , Hepatocytes/metabolism , Hypoglycemic Agents/pharmacology , Pioglitazone , Rats , Reverse Transcriptase Polymerase Chain Reaction , Rosiglitazone , Thiazolidinediones/pharmacology , Troglitazone
9.
J Anal Toxicol ; 29(7): 675-7, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16419399

ABSTRACT

We evaluated the performance of the DRI Oxycodone (DRI-Oxy) enzyme immunoassay for the detection of oxycodone and its primary metabolite, oxymorphone, in urine, by testing 1523 consecutive urine specimens collected from pain management patients. All 1523 specimens were tested with the DRI-Oxy assay at a cut-off of 100 ng/mL and then analyzed by gas chromatography-mass spectrometry (GC-MS) for opiates, including oxycodone and oxymorphone. Approximately 29% (435) of the 1523 specimens yielded positive results by the DRI-Oxy assay. Of these 435 specimens, GC-MS confirmed the presence of oxycodone and/or oxymorphone at >100 ng/mL in 433 specimens, an agreement of 99.5%. In addition to oxycodone and/or oxymorphone, 189 of the 433 positive specimens contained other opiates including codeine, hydrocodone, hydromorphone, and morphine. These other opiates were also present in 54% (590/1084) of the oxycodone negative specimens. The DRI-Oxy assay demonstrated no cross-reactivity, yielding negative results, with specimens containing concentrations of codeine, >75,000 ng/mL; hydrocodone, >75,000 ng/mL; hydromorphone, >12,000 ng/mL; and morphine, >163,000 ng/mL. From the presented study, the sensitivity of the DRI-Oxy was 0.991 and the selectivity 0.998. The DRI-Oxy assay provided a highly reliable method for the detection of oxycodone and/or oxymorphone in urine specimens.


Subject(s)
Immunoassay , Narcotics/urine , Oxycodone/urine , Substance Abuse Detection/methods , Forensic Medicine/methods , Gas Chromatography-Mass Spectrometry , Humans , Narcotics/immunology , Oxycodone/immunology , Oxymorphone/immunology , Oxymorphone/urine , Reproducibility of Results , Sensitivity and Specificity
10.
Mol Cancer Ther ; 1(14): 1293-304, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12516962

ABSTRACT

Drug discovery strategies are needed that can rapidly exploit multiple therapeutic targets associated with the complex gene expression changes that characterize a polygenic disease such as cancer. We report a new cell-based high-throughput technology for screening chemical libraries against several potential cancer target genes in parallel. Multiplex gene expression (MGE) analysis provides direct and quantitative measurement of multiple endogenous mRNAs using a multiplexed detection system coupled to reverse transcription-PCR. A multiplex assay for six genes overexpressed in cancer cells was used to screen 9000 chemicals and known drugs in the human prostate cancer cell line PC-3. Active compounds that modulated gene expression levels were identified, and IC50 values were determined for compounds that bind DNA, cell surface receptors, and components of intracellular signaling pathways. A class of steroids related to the cardiac glycosides was identified that potently inhibited the plasma membrane Na(+)K(+)-ATPase resulting in the inhibition of four of the prostate target genes including transcription factors Hoxb-13, hPSE/PDEF, hepatocyte nuclear factor-3alpha, and the inhibitor of apoptosis, survivin. Representative compounds selectively induced apoptosis in PC-3 cells compared with the nonmetastatic cell line BPH-1. The multiplex assay distinguished potencies among structural variants, enabling structure-activity analysis suitable for chemical optimization studies. A second multiplex assay for five toxicological markers, Hsp70, Gadd153, Gadd45, O6-methylguanine-DNA methyltransferase, and cyclophilin, detected compounds that caused DNA damage and cellular stress and was a more sensitive and specific indicator of potential toxicity than measurement of cell viability. MGE analysis facilitates rapid drug screening and compound optimization, the simultaneous measurement of toxicological end points, and gene function analysis.


Subject(s)
Drug Design , Gene Expression Regulation, Neoplastic , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Up-Regulation , Actins/metabolism , Apoptosis , CCAAT-Enhancer-Binding Proteins/metabolism , Coloring Agents/pharmacology , Cyclophilins/metabolism , DNA/metabolism , HSP70 Heat-Shock Proteins/metabolism , Humans , Inhibitory Concentration 50 , Intracellular Signaling Peptides and Proteins , Kinetics , Male , Models, Chemical , O(6)-Methylguanine-DNA Methyltransferase/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proteins/metabolism , RNA, Messenger/metabolism , Signal Transduction , Sodium-Potassium-Exchanging ATPase/metabolism , Structure-Activity Relationship , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , Time Factors , Transcription Factor CHOP , Transcription Factors/metabolism , Tumor Cells, Cultured , GADD45 Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...