Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Host Microbe ; 31(7): 1185-1199.e10, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37315561

ABSTRACT

Hemochorial placentas have evolved defense mechanisms to prevent the vertical transmission of viruses to the immunologically underdeveloped fetus. Unlike somatic cells that require pathogen-associated molecular patterns to stimulate interferon production, placental trophoblasts constitutively produce type III interferons (IFNL) through an unknown mechanism. We demonstrate that transcripts of short interspersed nuclear elements (SINEs) embedded in miRNA clusters within the placenta trigger a viral mimicry response that induces IFNL and confers antiviral protection. Alu SINEs within primate-specific chromosome 19 (C19MC) and B1 SINEs within rodent-specific microRNA cluster on chromosome 2 (C2MC) produce dsRNAs that activate RIG-I-like receptors (RLRs) and downstream IFNL production. Homozygous C2MC knockout mouse trophoblast stem (mTS) cells and placentas lose intrinsic IFN expression and antiviral protection, whereas B1 RNA overexpression restores C2MCΔ/Δ mTS cell viral resistance. Our results uncover a convergently evolved mechanism whereby SINE RNAs drive antiviral resistance in hemochorial placentas, placing SINEs as integral players in innate immunity.


Subject(s)
MicroRNAs , Animals , Mice , Female , Pregnancy , MicroRNAs/genetics , Placenta , Interferon Lambda , Antiviral Agents , Short Interspersed Nucleotide Elements
2.
Sci Rep ; 10(1): 3029, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080251

ABSTRACT

During implantation, cytotrophoblasts undergo epithelial-to-mesenchymal transition (EMT) as they differentiate into invasive extravillous trophoblasts (EVTs). The primate-specific microRNA cluster on chromosome 19 (C19MC) is exclusively expressed in the placenta, embryonic stem cells and certain cancers however, its role in EMT gene regulation is unknown. In situ hybridization for miR-517a/c, a C19MC cistron microRNA, in first trimester human placentas displayed strong expression in villous trophoblasts and a gradual decrease from proximal to distal cell columns as cytotrophoblasts differentiate into invasive EVTs. To investigate the role of C19MC in the regulation of EMT genes, we employed the CRISPR/dCas9 Synergistic Activation Mediator (SAM) system, which induced robust transcriptional activation of the entire C19MC cistron and resulted in suppression of EMT associated genes. Exposure of human iPSCs to hypoxia or differentiation of iPSCs into either cytotrophoblast-stem-like cells or EVT-like cells under hypoxia reduced C19MC expression and increased EMT genes. Furthermore, transcriptional activation of the C19MC cistron induced the expression of OCT4 and FGF4 and accelerated cellular reprogramming. This study establishes the CRISPR/dCas9 SAM as a powerful tool that enables activation of the entire C19MC cistron and uncovers its novel role in suppressing EMT genes critical for maintaining the epithelial cytotrophoblasts stem cell phenotype.


Subject(s)
Cellular Reprogramming/genetics , Chromosomes, Human, Pair 19/genetics , Epithelial-Mesenchymal Transition/genetics , MicroRNAs/genetics , Biomarkers/metabolism , Cell Differentiation/genetics , Cell Hypoxia/genetics , Female , Gene Expression Regulation , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , MicroRNAs/metabolism , Multigene Family , Placenta/metabolism , Pregnancy , Transcriptional Activation/genetics , Trophoblasts/metabolism
3.
FASEB J ; 33(2): 2759-2769, 2019 02.
Article in English | MEDLINE | ID: mdl-30307771

ABSTRACT

Preeclampsia (PE) is a common cause of maternal morbidity, characterized by impaired trophoblast invasion and spiral artery transformation resulting in progressive uteroplacental hypoxia. Given the primary role of LIN28A and LIN28B in modulating cell metabolism, differentiation, and invasion, we hypothesized that LIN28A and/or LIN28B regulates trophoblast differentiation and invasion, and that its dysregulation may contribute to PE. Here we show that LIN28B is expressed ∼1300-fold higher than LIN28A in human term placenta and is the predominant paralog expressed in primary human trophoblast cultures. The expression of LIN28B mRNA and protein levels are significantly reduced in gestational age-matched preeclamptic vs. normal placentas, whereas LIN28A expression is not different. First trimester human placental sections displayed stronger LIN28B immunoreactivity in extravillous (invasive) cytotrophoblasts and syncytial sprouts vs. villous trophoblasts. LIN28B overexpression increased HTR8 cell proliferation, migration, and invasion, whereas LIN28B knockdown in JEG3 cells reduced cell proliferation. Moreover, LIN28B knockdown in JEG3 cells suppressed syncytin 1 (SYN-1), apelin receptor early endogenous ligand (ELABELA), and the chromosome 19 microRNA cluster, and increased mRNA expression of ITGß4 and TNF-α. Incubation of BeWo and JEG3 cells under hypoxia significantly decreased expression of LIN28B and LIN28A, SYN-1, and ELABELA, whereas TNF-α is increased. These results provide the first evidence that LIN28B is the predominant paralog in human placenta and that decreased LIN28B may play a role in PE by reducing trophoblast invasion and syncytialization, and by promoting inflammation.-Canfield, J., Arlier, S., Mong, E. F., Lockhart, J., VanWye, J., Guzeloglu-Kayisli, O., Schatz, F., Magness, R. R., Lockwood, C. J., Tsibris, J. C. M., Kayisli, U. A., Totary-Jain, H. Decreased LIN28B in preeclampsia impairs human trophoblast differentiation and migration.


Subject(s)
Cell Differentiation , Cell Movement , Placenta/pathology , Pre-Eclampsia/pathology , RNA-Binding Proteins/metabolism , Trophoblasts/pathology , Adult , Apoptosis , Cell Proliferation , Cells, Cultured , Female , Fetus/metabolism , Fetus/pathology , Gestational Age , Humans , Male , Placenta/metabolism , Pre-Eclampsia/metabolism , Pregnancy , RNA-Binding Proteins/genetics , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...