Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Radiol Artif Intell ; : e240225, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984986

ABSTRACT

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology, and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and more generally in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment and highlights the need to integrate clinical and medical imaging data and introduces strategies to ensure smooth and incentivized integration. ©RSNA, 2024.

2.
Radiol Artif Intell ; : e230182, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864741

ABSTRACT

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. The University of California San Francisco Adult Longitudinal Post-Treatment Diffuse Glioma (UCSF-ALPTDG) MRI dataset is a publicly available annotated dataset featuring multimodal brain MRIs from 298 patients with diffuse gliomas taken at two consecutive follow-ups (596 scans total), with corresponding clinical history and expert voxelwise annotations. ©RSNA, 2024.

5.
Radiol Artif Intell ; 6(3): e230227, 2024 May.
Article in English | MEDLINE | ID: mdl-38477659

ABSTRACT

The Radiological Society of North America (RSNA) has held artificial intelligence competitions to tackle real-world medical imaging problems at least annually since 2017. This article examines the challenges and processes involved in organizing these competitions, with a specific emphasis on the creation and curation of high-quality datasets. The collection of diverse and representative medical imaging data involves dealing with issues of patient privacy and data security. Furthermore, ensuring quality and consistency in data, which includes expert labeling and accounting for various patient and imaging characteristics, necessitates substantial planning and resources. Overcoming these obstacles requires meticulous project management and adherence to strict timelines. The article also highlights the potential of crowdsourced annotation to progress medical imaging research. Through the RSNA competitions, an effective global engagement has been realized, resulting in innovative solutions to complex medical imaging problems, thus potentially transforming health care by enhancing diagnostic accuracy and patient outcomes. Keywords: Use of AI in Education, Artificial Intelligence © RSNA, 2024.


Subject(s)
Artificial Intelligence , Radiology , Humans , Diagnostic Imaging/methods , Societies, Medical , North America
6.
J Am Coll Radiol ; 21(7): 1119-1129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38354844

ABSTRACT

Despite the surge in artificial intelligence (AI) development for health care applications, particularly for medical imaging applications, there has been limited adoption of such AI tools into clinical practice. During a 1-day workshop in November 2022, co-organized by the ACR and the RSNA, participants outlined experiences and problems with implementing AI in clinical practice, defined the needs of various stakeholders in the AI ecosystem, and elicited potential solutions and strategies related to the safety, effectiveness, reliability, and transparency of AI algorithms. Participants included radiologists from academic and community radiology practices, informatics leaders responsible for AI implementation, regulatory agency employees, and specialty society representatives. The major themes that emerged fell into two categories: (1) AI product development and (2) implementation of AI-based applications in clinical practice. In particular, participants highlighted key aspects of AI product development to include clear clinical task definitions; well-curated data from diverse geographic, economic, and health care settings; standards and mechanisms to monitor model reliability; and transparency regarding model performance, both in controlled and real-world settings. For implementation, participants emphasized the need for strong institutional governance; systematic evaluation, selection, and validation methods conducted by local teams; seamless integration into the clinical workflow; performance monitoring and support by local teams; performance monitoring by external entities; and alignment of incentives through credentialing and reimbursement. Participants predicted that clinical implementation of AI in radiology will continue to be limited until the safety, effectiveness, reliability, and transparency of such tools are more fully addressed.


Subject(s)
Artificial Intelligence , Radiology , Humans , United States , Reproducibility of Results , Diagnostic Imaging , Societies, Medical , Patient Safety
8.
Can Assoc Radiol J ; 75(2): 226-244, 2024 May.
Article in English | MEDLINE | ID: mdl-38251882

ABSTRACT

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever­growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi­society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.


Subject(s)
Artificial Intelligence , Radiology , Societies, Medical , Humans , Canada , Europe , New Zealand , United States , Australia
9.
Insights Imaging ; 15(1): 16, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38246898

ABSTRACT

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones.This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.Key points • The incorporation of artificial intelligence (AI) in radiological practice demands increased monitoring of its utility and safety.• Cooperation between developers, clinicians, and regulators will allow all involved to address ethical issues and monitor AI performance.• AI can fulfil its promise to advance patient well-being if all steps from development to integration in healthcare are rigorously evaluated.

10.
Radiol Artif Intell ; 6(1): e230513, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38251899

ABSTRACT

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools. This article is simultaneously published in Insights into Imaging (DOI 10.1186/s13244-023-01541-3), Journal of Medical Imaging and Radiation Oncology (DOI 10.1111/1754-9485.13612), Canadian Association of Radiologists Journal (DOI 10.1177/08465371231222229), Journal of the American College of Radiology (DOI 10.1016/j.jacr.2023.12.005), and Radiology: Artificial Intelligence (DOI 10.1148/ryai.230513). Keywords: Artificial Intelligence, Radiology, Automation, Machine Learning Published under a CC BY 4.0 license. ©The Author(s) 2024. Editor's Note: The RSNA Board of Directors has endorsed this article. It has not undergone review or editing by this journal.


Subject(s)
Artificial Intelligence , Radiology , Humans , Canada , Radiography , Automation
11.
J Am Coll Radiol ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38276923

ABSTRACT

Artificial intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools. KEY POINTS.

12.
J Med Imaging Radiat Oncol ; 68(1): 7-26, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38259140

ABSTRACT

Artificial Intelligence (AI) carries the potential for unprecedented disruption in radiology, with possible positive and negative consequences. The integration of AI in radiology holds the potential to revolutionize healthcare practices by advancing diagnosis, quantification, and management of multiple medical conditions. Nevertheless, the ever-growing availability of AI tools in radiology highlights an increasing need to critically evaluate claims for its utility and to differentiate safe product offerings from potentially harmful, or fundamentally unhelpful ones. This multi-society paper, presenting the views of Radiology Societies in the USA, Canada, Europe, Australia, and New Zealand, defines the potential practical problems and ethical issues surrounding the incorporation of AI into radiological practice. In addition to delineating the main points of concern that developers, regulators, and purchasers of AI tools should consider prior to their introduction into clinical practice, this statement also suggests methods to monitor their stability and safety in clinical use, and their suitability for possible autonomous function. This statement is intended to serve as a useful summary of the practical issues which should be considered by all parties involved in the development of radiology AI resources, and their implementation as clinical tools.


Subject(s)
Artificial Intelligence , Radiology , Humans , Canada , Societies, Medical , Europe
13.
Radiol Artif Intell ; 5(5): e230235, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37795136
15.
ArXiv ; 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37608932

ABSTRACT

Automated brain tumor segmentation methods have become well-established and reached performance levels offering clear clinical utility. These methods typically rely on four input magnetic resonance imaging (MRI) modalities: T1-weighted images with and without contrast enhancement, T2-weighted images, and FLAIR images. However, some sequences are often missing in clinical practice due to time constraints or image artifacts, such as patient motion. Consequently, the ability to substitute missing modalities and gain segmentation performance is highly desirable and necessary for the broader adoption of these algorithms in the clinical routine. In this work, we present the establishment of the Brain MR Image Synthesis Benchmark (BraSyn) in conjunction with the Medical Image Computing and Computer-Assisted Intervention (MICCAI) 2023. The primary objective of this challenge is to evaluate image synthesis methods that can realistically generate missing MRI modalities when multiple available images are provided. The ultimate aim is to facilitate automated brain tumor segmentation pipelines. The image dataset used in the benchmark is diverse and multi-modal, created through collaboration with various hospitals and research institutions.

16.
ArXiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37608937

ABSTRACT

Meningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date. Challenge competitors will develop automated segmentation models to predict three distinct meningioma sub-regions on MRI including enhancing tumor, non-enhancing tumor core, and surrounding nonenhancing T2/FLAIR hyperintensity. Models will be evaluated on separate validation and held-out test datasets using standardized metrics utilized across the BraTS 2023 series of challenges including the Dice similarity coefficient and Hausdorff distance. The models developed during the course of this challenge will aid in incorporation of automated meningioma MRI segmentation into clinical practice, which will ultimately improve care of patients with meningioma.

19.
J Am Med Inform Assoc ; 30(3): 545-550, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36519951

ABSTRACT

Electronic health records (EHRs) offer decision support in the form of alerts, which are often though not always interruptive. These alerts, though sometimes effective, can come at the cost of high cognitive burden and workflow disruption. Less well studied is the design of the EHR itself-the ordering provider's "choice architecture"-which "nudges" users toward alternatives, sometimes unintentionally toward waste and misuse, but ideally intentionally toward better practice. We studied 3 different workflows at our institution where the existing choice architecture was potentially nudging providers toward erroneous decisions, waste, and misuse in the form of inappropriate laboratory work, incorrectly specified computerized tomographic imaging, and excessive benzodiazepine dosing for imaging-related sedation. We changed the architecture to nudge providers toward better practice and found that the 3 nudges were successful to varying degrees in reducing erroneous decision-making and mitigating waste and misuse.


Subject(s)
Electronic Health Records , Workflow
20.
Radiology ; 306(3): e213199, 2023 03.
Article in English | MEDLINE | ID: mdl-36378030

ABSTRACT

Background There is increasing interest in noncontrast breast MRI alternatives for tumor visualization to increase the accessibility of breast MRI. Purpose To evaluate the feasibility and accuracy of generating simulated contrast-enhanced T1-weighted breast MRI scans from precontrast MRI sequences in biopsy-proven invasive breast cancer with use of deep learning. Materials and Methods Women with invasive breast cancer and a contrast-enhanced breast MRI examination that was performed for initial evaluation of the extent of disease between January 2015 and December 2019 at a single academic institution were retrospectively identified. A three-dimensional, fully convolutional deep neural network simulated contrast-enhanced T1-weighted breast MRI scans from five precontrast sequences (T1-weighted non-fat-suppressed [FS], T1-weighted FS, T2-weighted FS, apparent diffusion coefficient, and diffusion-weighted imaging). For qualitative assessment, four breast radiologists (with 3-15 years of experience) blinded to whether the method of contrast was real or simulated assessed image quality (excellent, acceptable, good, poor, or unacceptable), presence of tumor enhancement, and maximum index mass size by using 22 pairs of real and simulated contrast-enhanced MRI scans. Quantitative comparison was performed using whole-breast similarity and error metrics and Dice coefficient analysis of enhancing tumor overlap. Results Ninety-six MRI examinations in 96 women (mean age, 52 years ± 12 [SD]) were evaluated. The readers assessed all simulated MRI scans as having the appearance of a real MRI scan with tumor enhancement. Index mass sizes on real and simulated MRI scans demonstrated good to excellent agreement (intraclass correlation coefficient, 0.73-0.86; P < .001) without significant differences (mean differences, -0.8 to 0.8 mm; P = .36-.80). Almost all simulated MRI scans (84 of 88 [95%]) were considered of diagnostic quality (ratings of excellent, acceptable, or good). Quantitative analysis demonstrated strong similarity (structural similarity index, 0.88 ± 0.05), low voxel-wise error (symmetric mean absolute percent error, 3.26%), and Dice coefficient of enhancing tumor overlap of 0.75 ± 0.25. Conclusion It is feasible to generate simulated contrast-enhanced breast MRI scans with use of deep learning. Simulated and real contrast-enhanced MRI scans demonstrated comparable tumor sizes, areas of tumor enhancement, and image quality without significant qualitative or quantitative differences. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Slanetz in this issue. An earlier incorrect version appeared online. This article was corrected on January 17, 2023.


Subject(s)
Breast Neoplasms , Deep Learning , Female , Humans , Middle Aged , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Retrospective Studies , Breast/diagnostic imaging , Breast/pathology , Magnetic Resonance Imaging/methods , Contrast Media
SELECTION OF CITATIONS
SEARCH DETAIL
...