Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters











Publication year range
1.
Chem Commun (Camb) ; 60(63): 8204-8207, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39010799

ABSTRACT

Polymers can serve as an effective matrix to stabilize gold nanoparticles. These materials offer a continuous light-activated supply of subnanoclusters, which are composed of a few atoms. We report an efficient approach to enhance the catalytic activity of gold subnanoclusters by in situ feeding of these species through the generation of hot carriers via 5d-6s6p interband transitions on PEG-stabilized Au nanoparticles.

2.
Chempluschem ; : e202400273, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764413

ABSTRACT

Conventional hydrogen bonding (H-bonding) has been extensively studied in organic and biological systems. However, its role in transition metal chemistry, particularly with Group 11 metals (i. e. Cu, Ag, Au) as hydrogen bond acceptors, remains relatively unexplored. Through a combination of experimental techniques, such as Nuclear Magnetic Resonance (NMR), Infrared spectroscopy (IR), X-Ray Diffraction (XRD), and computational calculations, several aspects of H-bonding interactions with Group 11 metals are examined, shedding light on its impact on structural motifs and reactivity. These include bond strengths, geometries, and effects on electronic structures. Understanding the intricacies of hydrogen bonding within transition metal chemistry holds promise for various applications, including catalytic transformations, the construction of molecular assemblies, synthesis of complexes displaying anticancer activities, or luminescence applications (e. g. Thermally Activated Delayed Fluorescence, TADF). This review encompasses the most significant recent advances, challenges, and future prospects in this emerging field.

3.
Dalton Trans ; 53(10): 4652-4661, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38357972

ABSTRACT

The polymeric linear chain [AuTl(C6Cl5)2]n reacts with three terpyridine-type ligands substituted with thiophene groups containing N-donor centres in different relative positions (L1, L2 and L3), leading to the Au(I)/Tl(I) complexes [AuTl(C6Cl5)2(L1)]n (1), [{AuTl(C6Cl5)2}2(L2)]n (2) and [AuTl(C6Cl5)2(L3)]n (3). X-Ray diffraction studies reveal that L1 acts as a chelate, while L2 and L3 act as bridging ligands, resulting in different coordination indexes for the thallium(I) centre. These structural differences strongly influence their optical properties, and while compounds 2 and 3 emit near the limit of the visible range, complex 1 emits in the infrared region. DFT calculations have also been carried out in order to determine the origin of the electronic transitions responsible for their optical properties.

4.
Phys Chem Chem Phys ; 26(7): 5922-5931, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38317631

ABSTRACT

Photophysical properties of the three-fold symmetric 2,5,8-tris(phenylthiolato)heptazine molecule (1) are studied from combined experimental and computational viewpoints. The intense blue photoemission of 1 in the solid state and in toluene solution is proposed to have a fluorescent origin on the basis of a relatively short emission lifetime and no detectable triplet decay. Calculations at correlated ab initio levels of theory also show that 1 has a large inverted singlet-triplet (IST) gap, a non-vanishing spin-orbit coupling matrix element between the first excited singlet and triplet states, and a fast intersystem crossing rate constant that leads to singlet population from the higher-lying triplet state. The IST gap implies that the first excited singlet state is the lowest excited one, agreeing with the measured fluorescent behaviour of 1. IST gaps are also obtained for the oxygen-containing (2) and selenium-containing (3) analogues of 1 at the ADC(2) level of theory, but not for the tellurium one (4). Calculations of the magnetically induced current density demonstrate that the heptazine core of 1 is globally non-aromatic due to the alternation of carbon and nitrogen atoms along its external rim.

5.
Chempluschem ; 89(3): e202300429, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37935030

ABSTRACT

The reactivity of the heterometallic polynuclear complexes [{Au(R)2 }2 Cu2 (MeCN)2 ]n (R=C6 F5 , C6 Cl5 ) with the thioether crowns 1,4,7-trithiacyclononane (L1, [12]aneS3 ), 1,4,8,11-tetrathiacyclododecane (L2, [14]aneS4 ), 1,4,7,10,13,16,19,22-octathiacyclotetracosane (L3, [24]aneS8 ), and the quinoline functionalized pendant arm derivatives of the 12-membered mixed-donor macrocycles 1-aza-,4,7,10-trithiacyclododecane ([12]aneNS3 ) and 1,7-diaza-4,10-dithiacyclododecane ([12]aneN2 S2 ), L4 and L5, respectively, was investigated in THF solution. While with L4 and L5 only ionic compounds of general formulation [Cu(L)][Au(R)2 ] were isolated and structurally characterized (none of them featuring Au⋅⋅⋅Cu interactions), with L1-L3, beside similar ionic compounds, some heteronuclear complexes of general formulation [{Au(R)2 }{Cu(L)}] and featuring Au⋅⋅⋅Cu interactions were also obtained. All of them display rather unusual non-classical C-H⋅⋅⋅Au hydrogen interactions. The complexes display in the solid state different optical properties related to their structures, which have been studied experimentally and theoretically via TD-DFT calculations. In particular, all compounds of the type [{Au(R)2 }{Cu(L)}] featuring Au⋅⋅⋅Cu metallophilic interactions display luminescence in the solid state both at room temperature (RT) and at 77 K. On the contrary, ionic compounds of general formulation [Cu(L)][Au(R)2 ], except [Cu(L4)][Au(C6 F5 )2 ], are not luminescent.

6.
Dalton Trans ; 52(46): 17119-17131, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37800283

ABSTRACT

The reaction among [Au2Ag2(C6F5)4(OEt2)2]n, PbCl2 and terpyridine leads to the polymeric complex [{Au(C6F5)2}2{Pb(terpy)}]n (1). Its crystal structure reveals potential voids close to the lead centres large enough to hold different molecules. The availability of these free sites allows complex 1 to act as a VOC sensor. Thus, when 1 is exposed to different solvent vapours such as acetonitrile, toluene or THF, variations in its solid appearance and its photophysical properties are observed as a consequence of the formation of the new polymorphs [{Au(C6F5)2}2{Pb(terpy)(CH3CN)2}]n (2), [{Au(C6F5)2}2{Pb(terpy)}]n·Tol (3) and [{Au(C6F5)2}2{Pb(terpy)(THF)}]n·THF (4). Each polymorph displays a different emission energy depending on its structure and the presence of metallophilic interactions. In addition, the reversible solvent molecule exchange allows the tuning of the luminescence emissions in the greenish yellow-red range. DFT and TD-DFT calculations were performed to explain the origin of the luminescence of all these complexes.

7.
Molecules ; 28(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570650

ABSTRACT

Aggregating gold(I) complexes in solution through short aurophilic contacts promotes new photoluminescent deactivation pathways (aggregation-induced emission, AIE). The time dependence of spontaneous AIE is seldom studied. We examine the behavior of complex [Au(N9-hypoxanthinate)(PTA)] (1) in an aqueous solution with the aid of variable-temperature NMR, time-resolved UV-Vis and photoluminescence spectroscopy, and PGSE NMR. The studies suggest that partial ligand scrambling in favor of the ionic [Au(PTA)2][Au(N9-hypoxanthinate)2] pair followed by anion oligomerization takes place. The results are rationalized with the aid of computational calculations at the TD-DFT level of theory and IRI analysis of the electron density.

8.
Angew Chem Int Ed Engl ; 62(41): e202310314, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37615519

ABSTRACT

Au⋅⋅⋅H-X (X=N or C) hydrogen bonding is gaining increasing interest, both in the study of its intrinsic nature and in their operability in different fields. While the role of these interactions has been studied in the stabilization of gold(I) complexes, their role during the minimum free energy reaction pathway of a given catalytic process remains unexplored. We report herein that complex [Au(C≡CPh)(pip)] (pip=piperidine) catalyses the A3 -coupling reaction for the synthesis of propargylamines, thanks to the ability of Au(I) to promote weak hydrogen bonding interactions with the reactants along the free energy profile. Density Functional Theory (DFT) calculations show that these Au⋅⋅⋅H-X interactions play a directing role in the catalysed A3 -coupling. Topological non-covalent interactions (NCI), interaction region indicator (IRI) and quantum theory of atoms in molecules (QTAIM) analysis in real space of the electron density provide a description of these interactions accurately.

9.
RSC Adv ; 13(36): 25425-25436, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37636510

ABSTRACT

Gold(i) triarylphosphane compounds are a well-known class of coordination compounds displaying from mild to strong emissive properties. Mechanochemical approaches to the preparation, spectroscopic characterization, X-ray diffraction structural determination, and photophysical studies of green emissive neutral linear monophosphane or neutral pseudo-T-shaped or cationic bis-phosphane gold(i) compounds, are herein discussed. The mechanochemical approach to the preparation of gold(i) derivatives was particularly successful for ligands bearing the carboxylic group, while the preparation with esterified ligands yields better results with solvent-mediated methods. The introduction of carboxyl or ester substituents in one aryl group favors the ligand-centered emissions. The analysis of the origin of the emissions was elucidated on the basis of DFT calculations, addressing the emissive behavior to ligand-centered excited states, strongly affected by supramolecular reversible hydrogen bonding aggregation. The study indicates that the ligand with the carboxylic group is particularly suitable for the mechanochemical preparation of emissive gold(i) complexes for material science applications.

10.
Inorg Chem ; 62(26): 10307-10316, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37327451

ABSTRACT

The benzonitrile solvate {[{Au(C6F5)2}2{Pb(terpy)}]·NCPh}n (1) (terpy = 2,2':6',2″-terpyridine) displays reversible reorientation and coordination of the benzonitrile molecule to lead upon external stimuli. High-pressure X-ray diffraction studies between 0 and 2.1 GPa reveal a 100% of conversion without loss of symmetry, which is totally reversible upon decompression. By variable-temperature X-ray diffraction studies between 100 and 285 K, a partial coordination is achieved.

SELECTION OF CITATIONS
SEARCH DETAIL