Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Hepatology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38975812

ABSTRACT

BACKGROUND AND AIMS: Antimicrobial proteins of the REG3 family provide a first line of protection against infections and transformed cells. Their expression is inducible by inflammation, which makes their role in cancer biology less clear, since an immune- inflammatory context may preexist or coexist with cancer, as occurs in hepatocellular carcinoma (HCC). The aim of this study is to clarify the role of REG3A in liver carcinogenesis and to determine whether carbohydrate-binding functions are involved. APPROACH AND RESULTS: This study provides evidence of the suppressive role of REG3A in HCC by reducing O-GlcNAcylation in two mouse models of HCC, in vitro cell studies, and in clinical samples. REG3A expression in hepatocytes significantly reduces global O- GlcNAcylation and O-GlcNAcylation of c-MYC in preneoplastic and tumor livers and markedly inhibits HCC development in REG3A-c-MYC double transgenic mice and in mice exposed to diethylnitrosamine (DEN). REG3A modifies O-GlcNAcylation without altering the expression or activity of OGT, OGA, or GFAT. Reduced O-GlcNAcylation was consistent with decreased levels of UDP-GlcNAc in pre-cancerous and cancerous livers. This effect is linked to the ability of REG3A to bind Glc and Glc-6P, suggested by a REG3A mutant unable to bind Glc and Glc- 6P and alter O-GlcNAcylation. Importantly, cirrhotic patients with high hepatic REG3A expression had lower levels of O-GlcNAcylation and longer cancer-free survival than REG3A- negative cirrhotic livers. CONCLUSION: REG3A helps fight liver cancer by reducing O-GlcNAcylation. This study suggests a new paradigm for the regulation of O-GlcNAc signalling in cancer-related pathways through interactions with the carbohydrate-binding function of REG3A.

2.
Stem Cells ; 42(4): 301-316, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38262709

ABSTRACT

Somatic cells that have been partially reprogrammed by the factors Oct4, Sox2, Klf4, and cMyc (OSKM) have been demonstrated to be potentially tumorigenic in vitro and in vivo due to the acquisition of cancer-associated genomic alterations and the absence of OSKM clearance over time. In the present study, we obtained partially reprogrammed, SSEA1-negative cells by transducing murine hepatocytes with Δ1Δ3-deleted adenoviruses that expressed the 4 OSKM factors. We observed that, under long-term 2D and 3D culture conditions, hepatocytes could be converted into LGR5-positive cells with self-renewal capacity that was dependent on 3 cross-signaling pathways: IL6/Jak/Stat3, LGR5/R-spondin, and Wnt/ß-catenin. Following engraftment in syngeneic mice, LGR5-positive cells that expressed the cancer markers CD51, CD166, and CD73 were capable of forming invasive and metastatic tumors reminiscent of intrahepatic cholangiocarcinoma (ICC): they were positive for CK19 and CK7, featured associations of cord-like structures, and contained cuboidal and atypical cells with dissimilar degrees of pleomorphism and mitosis. The LGR5+-derived tumors exhibited a highly vascularized stroma with substantial fibrosis. In addition, we identified pro-angiogenic factors and signaling pathways involved in neo-angiogenesis and vascular development, which represent potential new targets for anti-angiogenic strategies to overcome tumor resistance to current ICC treatments.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Mice , Hepatocytes/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Bile Ducts, Intrahepatic/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Wnt Signaling Pathway/genetics
3.
Commun Biol ; 6(1): 269, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36918710

ABSTRACT

Innate immune mediators of pathogen clearance, including the secreted C-type lectins REG3 of the antimicrobial peptide (AMP) family, are known to be involved in the regulation of tissue repair and homeostasis. Their role in metabolic homeostasis remains unknown. Here we show that an increase in human REG3A improves glucose and lipid homeostasis in nutritional and genetic mouse models of obesity and type 2 diabetes. Mice overexpressing REG3A in the liver show improved glucose homeostasis, which is reflected in better insulin sensitivity in normal weight and obese states. Delivery of recombinant REG3A protein to leptin-deficient ob/ob mice or wild-type mice on a high-fat diet also improves glucose homeostasis. This is accompanied by reduced oxidative protein damage, increased AMPK phosphorylation and insulin-stimulated glucose uptake in skeletal muscle tissue. Oxidative damage in differentiated C2C12 myotubes is greatly attenuated by REG3A, as is the increase in gp130-mediated AMPK activation. In contrast, Akt-mediated insulin action, which is impaired by oxidative stress, is not restored by REG3A. These data highlight the importance of REG3A in controlling oxidative protein damage involved in energy and metabolic pathways during obesity and diabetes, and provide additional insight into the dual function of host-immune defense and metabolic regulation for AMP.


Subject(s)
Anti-Infective Agents , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Humans , Animals , Mice, Obese , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/metabolism , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Obesity/genetics , Insulin/pharmacology , Homeostasis , Anti-Infective Agents/pharmacology
4.
World J Hepatol ; 12(12): 1198-1210, 2020 Dec 27.
Article in English | MEDLINE | ID: mdl-33442448

ABSTRACT

BACKGROUND: Liver reduction is the main curative treatment for primary liver cancer, but its use remains limited as liver regeneration requires a minimum of 30% functional parenchyma. AIM: To study the dynamics of the liver regeneration process and consequent behavior of cell cycle regulators in rats after extended hepatectomy (90%) and postoperative glucose infusions. METHODS: Post-hepatectomy liver failure was triggered in 84 Wistar rats by reducing their liver mass by 90%. The animals received a post-operative glucose infusion and were randomly assigned to two groups: One to investigate the survival rate and the other for biochemical analyses. Animals that underwent laparotomy or 70% hepatectomy were used as controls. Blood and liver samples were collected on postoperative days 1 to 7. Liver morphology, function, and regeneration were studied with histology, immunohistochemistry, and western blotting. RESULTS: Postoperative mortality after major resection reached 20% and 55% in the first 24 h and 48 h, respectively, with an overall total of 70% 7 d after surgery. No apparent signs of apoptotic cell death were detected in the extended hepatectomy rat livers, but hepatocytes displaying a clear cytoplasm and an accumulation of hyaline material testified to changes affecting their functional activities. Liver regeneration started properly, as early events initiating cell proliferation occurred within the first 3 h, and the G1 to S transition was detected in less than 12 h. However, a rise in p27 (Kip1) followed by p21 (Waf1/Cip1) cell cycle inhibitor levels led to a delayed S phase progression and mitosis. Overall, liver regeneration in rats with a 90% hepatectomy was delayed by 24 h and associated with a delayed onset and lower peak magnitude of hepatocellular deoxyribonucleic acid synthesis. CONCLUSION: This work highlights the critical importance of the cyclin/cyclin-dependent kinase inhibitors of the Cip/Kip family in regulating the liver regeneration timeline following extended hepatectomy.

5.
Gastroenterology ; 154(4): 1009-1023.e14, 2018 03.
Article in English | MEDLINE | ID: mdl-29133078

ABSTRACT

BACKGROUND & AIMS: Paneth cell dysfunction causes deficiencies in intestinal C-type lectins and antimicrobial peptides, which leads to dysbiosis of the intestinal microbiota, alters the mucosal barrier, and promotes development of inflammatory bowel diseases. We investigated whether transgenic (TG) expression of the human regenerating family member 3 alpha gene (REG3A) alters the fecal microbiota and affects development of colitis in mice. METHODS: We performed studies with C57BL/6 mice that express human regenerating family member 3 alpha (hREG3A) in hepatocytes, via the albumin gene promoter. In these mice, hREG3A travels via the bile to the intestinal lumen. Some mice were given dextran sodium sulfate (DSS) to induce colitis. Feces were collected from mice and the composition of the microbiota was analyzed by 16S ribosomal RNA sequencing. The fecal microbiome was also analyzed from mice that express only 1 copy of human REG3A transgene but were fed feces from control mice (not expressing hREG3A) as newborns. Mice expressing hREG3A were monitored for DSS-induced colitis after cohousing or feeding feces from control mice. Colitis was induced in another set of control and hREG3A-TG mice by administration of trinitrobenzene sulfonic acid; some mice were given intrarectal injections of the hREG3A protein. Colon tissues were collected from mice and analyzed by histology and immunohistochemistry to detect mucin 2, as well as by 16S ribosomal RNA fluorescence in situ hybridization, transcriptional analyses, and quantitative polymerase chain reaction. We measured levels of reactive oxygen species (ROS) in bacterial cultures and fecal microbiota using 2',7'-dichlorofluorescein diacetate and flow cytometry. RESULTS: The fecal microbiota of mice that express hREG3A had a significant shift in composition, compared with control mice, with enrichment of Clostridiales (Ruminococcaceae, Lachnospiraceae) and depletion of Bacteroidetes (Prevotellaceae); the TG mice developed less-severe colitis following administration of DSS than control mice, associated with preserved gut barrier integrity and reduced bacterial translocation, epithelial inflammation, and oxidative damage. A similar shift in the composition of the fecal microbiota occurred after a few months in TG mice heterozygous for REG3A that harbored a wild-type maternal microbiota at birth; these mice developed less-severe forms of colitis following DSS administration. Cohoused and germ-free mice fed feces from REG3A-TG mice and given DSS developed less-severe forms of colitis and had reduced lipopolysaccharide activation of the toll-like receptor 4 and increased survival times compared with mice not fed feces from REG3A-TG mice. REG3A TG mice developed only mild colonic inflammation after exposure to 2,4,6-trinitrobenzene sulfonic acid, compared with control mice. Control mice given intrarectal hREG3A and exposed to 2,4,6-trinitrobenzene sulfonic acid showed less colon damage and inflammation than mice not given intrarectal hREG3A. Fecal samples from REG3A-TG mice had lower levels of ROS than feces from control mice during DSS administration. Addition of hREG3A to bacterial cultures reduced levels of ROS and increased survival of oxygen-sensitive commensal bacteria (Faecalibacterium prausnitzii and Roseburia intestinalis). CONCLUSIONS: Mice with hepatocytes that express hREG3A, which travels to the intestinal lumen, are less sensitive to colitis than control mice. We found hREG3A to alter the colonic microbiota by decreasing levels of ROS. Fecal microbiota from REG3A-TG mice protect non-TG mice from induction of colitis. These findings indicate a role for reduction of oxidative stress in preserving the gut microbiota and its ability to prevent inflammation.


Subject(s)
Bacteria/metabolism , Colitis/prevention & control , Colon/metabolism , Gastrointestinal Microbiome , Hepatocytes/metabolism , Pancreatitis-Associated Proteins/metabolism , Animals , Bacteria/classification , Bacteria/growth & development , Colitis/chemically induced , Colitis/metabolism , Colitis/microbiology , Colon/microbiology , Dextran Sulfate , Disease Models, Animal , Fecal Microbiota Transplantation , Humans , Mice, Inbred C57BL , Mice, Transgenic , Microbial Viability , Oxidative Stress/drug effects , Pancreatitis-Associated Proteins/genetics , Reactive Oxygen Species/metabolism , Time Factors , Trinitrobenzenesulfonic Acid
6.
PLoS One ; 11(3): e0150733, 2016.
Article in English | MEDLINE | ID: mdl-26983031

ABSTRACT

OBJECTIVE: No efficient medical treatment is available for severe acute hepatitis (SAH) except N-acetylcysteine for acetaminophen-induced acute liver failure. The human C-type lectin Reg3α, referred to as ALF-5755, improved survival in an animal model of acute liver failure and was well tolerated in a phase 1 trial in humans. We performed a phase 2a trial of ALF5755 in non-acetaminophen induced SAH. DESIGN: double-blind, randomized, placebo-controlled study. The primary end-point was the improvement in the coagulation protein synthesis assessed by the change of Prothrombin (PR) during the 72 hours following treatment initiation calculated as PRH0 minus PRH72 divided by 72 (PR slope H0H72). Intention to treat (ITT) and per-protocol (PP) analysis of the entire group and the Hepatitis B virus (HBV)/AIH (auto-immune hepatitis) sub-group were done separately. RESULTS: 57 patients were included. Twenty-eight received ALF-5755, 29 the placebo. Etiologies were: Hepatitis A (n = 10), HBV (n = 13), AIH (n = 9), drug-induced (n = 8), other (n = 17). On the whole group, nor the PR slope H0H72 (0.18±0.31 vs 0.25±0.32), nor the transplant-free survival rate at day 21 (75 vs 86%) differed between groups. Conversely, in the HBV-AIH subgroup, in which ALF was more severe, PR slope H0-H72 was higher in the ALF-5755 arm, the difference being significant in PP analysis (0.048±0.066 vs -0.040±0.099, p = 0.04); the median length of hospitalization was lower in the ALF-5755 group (8 vs 14 days, p = 0.02). CONCLUSION: ALF-5755 was not efficient in a ITT analysis performed on the whole sample; however it led to a significant, although moderate, clinical benefit in a PP analysis of the sub-group of patients with HBV or AIH related SAH. As HBV is the major cause of SAH in Asia and Africa and AIH a growing cause, this study emphasizes the need to pursuit the evaluation of this novel medical treatment of SAH. TRIAL REGISTRATION: ClinicalTrials.gov NCT01318525.


Subject(s)
Antigens, Neoplasm/therapeutic use , Antioxidants/therapeutic use , Biomarkers, Tumor/therapeutic use , Extracellular Matrix/drug effects , Lectins, C-Type/therapeutic use , Liver Diseases/drug therapy , Recombinant Proteins/therapeutic use , Acute Disease , Adult , Antigens, Neoplasm/adverse effects , Antigens, Neoplasm/pharmacology , Antioxidants/pharmacokinetics , Antioxidants/pharmacology , Area Under Curve , Biomarkers, Tumor/adverse effects , Biomarkers, Tumor/pharmacokinetics , Biomarkers, Tumor/pharmacology , Double-Blind Method , Female , Humans , Male , Middle Aged , Pancreatitis-Associated Proteins , Placebos , Prognosis , Recombinant Proteins/adverse effects , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology
8.
PLoS One ; 10(5): e0125584, 2015.
Article in English | MEDLINE | ID: mdl-25938566

ABSTRACT

BACKGROUND AND AIMS: Acute liver failure (ALF) is a rapidly progressive heterogeneous illness with high mortality rate and no widely accessible cure. A promising drug candidate according to previous preclinical studies is the Reg3α (or HIP/PAP) lectin, which alleviates ALF through its free-radical scavenging activity. Here we study the therapeutic targets of Reg3α in order to gain information on the nature of the oxidative stress associated with ALF. METHODS: Primary hepatocytes stressed with the reactive oxygen species (ROS) inducers TNFα and H2O2 were incubated with a recombinant Reg3α protein. ALF was induced in C57BL/6J mice by an anti-CD95 antibody. Livers and primary hepatocytes were harvested for deoxycholate separation of cellular and extracellular fractions, immunostaining, immunoprecipitation and malondialdehyde assays. Fibrin deposition was studied by immunofluorescence in frozen liver explants from patients with ALF. RESULTS: Fibrin deposition occurs during experimental and clinical acute liver injuries. Reg3α bound the resulting transient fibrin network, accumulated in the inflammatory extracellular matrix (ECM), greatly reduced extracellular ROS levels, and improved cell viability. Hepatocyte treatment with ligands of death receptors, e.g. TNFα and Fas, resulted in a twofold increase of malondialdehyde (MDA) level in the deoxycholate-insoluble fractions. Reg3α treatment maintained MDA at a level similar to control cells and thereby increased hepatocyte survival by 35%. No antioxidant effect of Reg3α was noted in the deoxycholate-soluble fractions. Preventing fibrin network formation with heparin suppressed the prosurvival effect of Reg3α. CONCLUSIONS: Reg3α is an ECM-targeted ROS scavenger that binds the fibrin scaffold resulting from hepatocyte death during ALF. ECM alteration is an important pathogenic factor of ALF and a relevant target for pharmacotherapy.


Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , Extracellular Space/metabolism , Lectins, C-Type/metabolism , Liver Failure, Acute/metabolism , Liver Failure, Acute/pathology , Oxidative Stress , Adult , Aged , Animals , Cells, Cultured , Disease Models, Animal , Extracellular Matrix/metabolism , Female , Fibrin/metabolism , Hepatocytes/metabolism , Humans , Male , Mice, Inbred C57BL , Middle Aged , Models, Biological , Pancreatitis-Associated Proteins , fas Receptor/metabolism
9.
Ann Clin Transl Neurol ; 1(10): 739-54, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25493266

ABSTRACT

OBJECTIVES: Excitotoxicity plays a significant role in the pathogenesis of perinatal brain injuries. Among the consequences of excessive activation of the N-methyl-d-aspartate (NMDA)-type glutamate are oxidative stress caused by free radical release from damaged mitochondria, neuronal death and subsequent loss of connectivity. Drugs that could protect nervous tissue and support regeneration are attractive therapeutic options. The hepatocarcinoma intestine pancreas protein/pancreatitis-associated protein I (HIP/PAP) or Reg3α, which is approved for clinical testing for the protection and regeneration of the liver, is upregulated in the central nervous system following injury or disease. Here, we examined the neuroprotective/neuroregenerative potential of HIP/PAP following excitotoxic brain injury. METHODS: We studied the expression of HIP/PAP and two of its putative effectors, cAMP-regulated phosphoprotein 19 (ARPP19) and growth-associated protein 43 (GAP-43), in the neonatal brain, and the protective/regenerative properties of HIP/PAP in three paradigms of perinatal excitotoxicity: intracerebral injection of the NMDA agonist ibotenate in newborn pups, a pediatric model of traumatic brain injury, and cultured primary cortical neurons. RESULTS: HIP/PAP, ARPP19, and GAP-43 were expressed in the neonatal mouse brain. HIP/PAP prevented the formation of cortical and white matter lesions and reduced neuronal death and glial activation following excitotoxic insults in vivo. In vitro, HIP/PAP promoted neuronal survival, preserved neurite complexity and fasciculation, and protected cell contents from reactive oxygen species (ROS)-induced damage. INTERPRETATION: HIP/PAP has strong neuroprotective/neuroregenerative potential following excitotoxic injury to the developing brain, and could represent an interesting therapeutic strategy in perinatal brain injury.

11.
J Hepatol ; 58(2): 385-7, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22940407

ABSTRACT

Increased translocation of intestinal bacteria is a hallmark of chronic liver disease and contributes to hepatic inflammation and fibrosis. Here we tested the hypothesis that the intestinal microbiota and Toll-like receptors (TLRs) promote hepatocellular carcinoma(HCC), a long-term consequence of chronic liver injury, inflammation,and fibrosis. Hepatocarcinogenesis in chronically injured livers depended on the intestinal microbiota and TLR4 activation in nonbone-marrow-derived resident liver cells. TLR4 and the intestinal microbiota were not required for HCC initiation but for HCC promotion, mediating increased proliferation, expression of the hepatomitogen epiregulin, and prevention of apoptosis. Gut sterilization restricted to late stages of hepatocarcinogenesis reduced HCC, suggesting that the intestinal microbiota and TLR4 represent therapeutic targets for HCC prevention in advanced liver disease.

12.
Hepatology ; 57(2): 689-99, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22911395

ABSTRACT

UNLABELLED: The development of potentially severe non-graft-versus-host disease (GVHD) hepatitis resembling autoimmune hepatitis (AIH) has been reported after bone marrow transplantation (BMT). The aim of this study was to better characterize this form of hepatitis, particularly through the identification of autoantigens recognized by patient sera. Five patients who received an allogeneic BMT for the treatment of hematological diseases developed liver dysfunction with histological features suggestive of AIH. Before and during the onset of hepatic dysfunction, sera were tested on immunoblottings performed with cytosolic, microsomal, mitochondrial, and nuclear proteins from rat liver homogenate and resolved by two-dimensional electrophoresis. Antigenic targets were identified by mass spectrometry. During the year that followed BMT, all patients presented with GVHD. Acute hepatitis then occurred after the withdrawal, or during the tapering, of immunosuppressive therapy. At that time, no patients had a history of liver toxic drug absorption, patent viral infection, or any histopathological findings consistent with GVHD. Immunoreactive spots stained by sera collected at the time of hepatic dysfunction were more numerous and more intensely expressed than those stained by sera collected before. Considerable patient-dependent pattern heterogeneity was observed. Among the 259 spots stained exclusively by sera collected at the time of hepatitis, a total of 240 spots were identified, corresponding to 103 different proteins. Twelve of them were recognized by sera from 3 patients. CONCLUSIONS: This is the first immunological description of potentially severe non-GVHD hepatitis occurring after BMT, determined using a proteomic approach and enabling a discussion of the mechanisms that transform an alloimmune reaction into an autoimmune response. Any decision to withdraw immunosuppression after allogeneic BMT should be made with caution.


Subject(s)
Bone Marrow Transplantation/adverse effects , Graft vs Host Disease/etiology , Hepatitis, Autoimmune/etiology , Transplantation, Homologous/immunology , Adult , Animals , Female , Graft vs Host Disease/immunology , Hepatitis, Autoimmune/immunology , Humans , Male , Middle Aged , Proteomics , Rats
13.
Cancer Res ; 72(21): 5505-15, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22962269

ABSTRACT

A number of solute carrier (SLC) proteins are subject to changes in expression and activity during carcinogenesis. Whether these changes play a role in carcinogenesis is unclear, except for some nutrients and ion carriers whose deregulation ensures the necessary reprogramming of energy metabolism in cancer cells. In this study, we investigated the functional role in tumor progression of the sodium/iodide symporter (NIS; aka SLC5A5), which is upregulated and mislocalized in many human carcinomas. Notably, we found that NIS enhanced cell migration and invasion without ion transport being involved. These functions were mediated by NIS binding to leukemia-associated RhoA guanine exchange factor, a Rho guanine exchange factor that activates the small GTPase RhoA. Sequestering NIS in intracellular organelles or impairing its targeting to the cell surface (as observed in many cancers) led to a further increase in cell motility and invasiveness. In sum, our results established NIS as a carrier protein that interacts with a major cell signaling hub to facilitate tumor cell locomotion and invasion.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Neoplasm Invasiveness/pathology , Signal Transduction/physiology , Symporters/metabolism , Cell Line, Tumor , Cell Movement/physiology , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , RNA, Small Interfering , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rho Guanine Nucleotide Exchange Factors , Transduction, Genetic , Two-Hybrid System Techniques
15.
PLoS One ; 6(8): e23344, 2011.
Article in English | MEDLINE | ID: mdl-21886786

ABSTRACT

The MUC4 mucin is a high molecular weight, membrane-bound, and highly glycosylated protein. It is a multi-domain protein that is putatively cleaved into a large mucin-like subunit (MUC4α) and a C-terminal growth-factor like subunit (MUC4ß). MUC4 plays critical roles in physiological and pathological conditions and is aberrantly overexpressed in several cancers, including those of the pancreas, cervix, breast and lung. It is also a potential biomarker for the diagnosis, prognosis and progression of several malignancies. Further, MUC4 plays diverse functional roles in cancer initiation and progression as evident from its involvement in oncogenic transformation, proliferation, inhibition of apoptosis, motility and invasion, and resistance to chemotherapy in human cancer cells. We have previously generated a monoclonal antibody 8G7, which is directed against the TR region of MUC4, and has been extensively used to study the expression of MUC4 in several malignancies. Here, we describe the generation of anti-MUC4 antibodies directed against the non-TR regions of MUC4. Recombinant glutathione-S-transferase (GST)-fused MUC4α fragments, both upstream (MUC4α-N-Ter) and downstream (MUC4α-C-Ter) of the TR domain, were used as immunogens to immunize BALB/c mice. Following cell fusion, hybridomas were screened using the aforementioned recombinant proteins ad lysates from human pancreatic cell lines. Three anti MUC4α-N-Ter and one anti-MUC4α-C-Ter antibodies were characterized by several inmmunoassays including enzyme-linked immunosorbent assay (ELISA), immunoblotting, immunofluorescene, flow cytometry and immunoprecipitation using MUC4 expressing human pancreatic cancer cell lines. The antibodies also reacted with the MUC4 in human pancreatic tumor sections in immunohistochemical analysis. The new domain-specific anti-MUC4 antibodies will serve as important reagents to study the structure-function relationship of MUC4 domains and for the development of MUC4-based diagnostics and therapeutics.


Subject(s)
Antibodies, Monoclonal/immunology , Mucin-4/chemistry , Mucin-4/immunology , Pancreatic Neoplasms/immunology , Tandem Repeat Sequences/immunology , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , Mice , Peroxidase/metabolism , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/immunology
17.
Hepatology ; 53(2): 618-27, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21274882

ABSTRACT

UNLABELLED: Acute liver failure (ALF) is a rare syndrome with a difficult clinical management and a high mortality rate. During ALF, several molecular pathways governing oxidative stress and apoptosis are activated to induce massive tissue injury and suppress cell proliferation. There are few anti-ALF drug candidates, among which is the C-type lectin Reg3α, or human hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein (HIP/PAP), which displayed promising properties for tissue regeneration and protection against cellular stress in transgenic mice. We report on substantial preclinical and clinical advances in the development of a recombinant (rc) full-length human HIP/PAP protein as an anti-ALF drug. The curative effects and mechanisms of action of rcHIP/PAP were investigated in murine Fas-induced ALF. Primary hepatocytes were cultured with cytotoxic doses of tumor necrosis factor α/actinomycin-D, transforming growth factor ß, agonistic Fas antibody or hydrogen peroxide, and various concentrations of rcHIP/PAP. Cell viability, proliferation index, apoptosis, and oxidation were monitored. We found that rcHIP/PAP significantly improved survival in Fas-intoxicated mice in a dose-dependent and time-dependent manner, with optimum effects when it was injected at advanced stages of ALF. Primary hepatocytes were efficiently protected against multiple cell death signals by rcHIP/PAP. This survival benefit was linked to a depletion of oxidized biomolecules in injured liver cells due to a strong reactive oxygen species scavenging activity of rcHIP/PAP. Clinically, an escalating dose phase 1 trial demonstrated a good tolerability and pharmacokinetic profile of rcHIP/PAP in healthy subjects. CONCLUSION: The rcHIP/PAP protein exhibited significant curative properties against ALF in mice. It is a free-radical scavenger that targets a broad spectrum of death effectors and favors liver regeneration. The good safety profile of rcHIP/PAP during a phase 1 trial encourages evaluation of its efficacy in patients with ALF.


Subject(s)
Antigens, Neoplasm/therapeutic use , Biomarkers, Tumor/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Free Radicals/metabolism , Lectins, C-Type/therapeutic use , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , fas Receptor/adverse effects , Adolescent , Adult , Animals , Antigens, Neoplasm/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/pharmacokinetics , Biomarkers, Tumor/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Dose-Response Relationship, Drug , Double-Blind Method , Free Radical Scavengers/pharmacokinetics , Free Radical Scavengers/pharmacology , Free Radical Scavengers/therapeutic use , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Lipid Peroxidation/drug effects , Liver Failure, Acute/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Pancreatitis-Associated Proteins , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Time Factors , Young Adult
18.
J Hepatol ; 54(2): 386-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21112113
19.
Int J Cancer ; 127(6): 1373-83, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20073063

ABSTRACT

Semaphorin 5A (SEMA5A) is an axonal regulator molecule, which belongs to the Semaphorin family of proteins. Previously, we identified SEMA5A as a putative marker for aggressive pancreatic tumors. However, the expression, localization and functional significance of SEMA5A in pancreatic tumors remain unclear. In our study, we hypothesized that SEMA5A expression modulates pancreatic tumor growth and metastasis. We analyzed the constitutive expression and localization of SEMA5A in patient pancreatic tumors (n = 33) and unmatched normal pancreatic (n = 8) tissues and human pancreatic cancer cell lines (n = 16) with different histopathological characteristics. We observed significantly higher expression of SEMA5A protein expression (p < 0.05) in human pancreatic tumor tissue samples compared to normal pancreatic tissues. Similarly, the pancreatic cancer cell lines with higher tumorigenic and metastatic potentials as xenografts in nude mice expressed higher levels of SEMA5A mRNA compared to those with lower tumorigenic and metastatic potentials. Furthermore, we examined the functional role of SEMA5A in pancreatic tumor growth and invasion. Ectopic expression of mouse full-length Sema5A in Panc1 (SEMA5A negative) cells significantly (p < 0.05) enhanced tumorigenesis, growth and metastasis in vivo as well as proliferation, invasiveness and homotypic aggregation in vitro. Together, these data demonstrate that the expression of SEMA5A in pancreatic cancer cells regulates tumorigenesis, growth, invasion and metastasis, and it also suggests a novel target for diagnosis and treatment of pancreatic cancer.


Subject(s)
Cell Division/genetics , Membrane Proteins/genetics , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , Nerve Tissue Proteins/genetics , Pancreatic Neoplasms/genetics , Animals , Base Sequence , Blotting, Western , DNA Primers , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/pathology , RNA, Messenger/genetics , Semaphorins
SELECTION OF CITATIONS
SEARCH DETAIL
...