Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 121(6): 1079-1094, 2024 06.
Article in English | MEDLINE | ID: mdl-38558208

ABSTRACT

Kinetoplastids are unicellular eukaryotic flagellated parasites found in a wide range of hosts within the animal and plant kingdoms. They are known to be responsible in humans for African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), and various forms of leishmaniasis (Leishmania spp.), as well as several animal diseases with important economic impact (African trypanosomes, including Trypanosoma congolense). Understanding the biology of these parasites necessarily implies the ability to manipulate their genomes. In this study, we demonstrate that transfection of a ribonucleoprotein complex, composed of recombinant Streptococcus pyogenes Cas9 (SpCas9) and an in vitro-synthesized guide RNA, results in rapid and efficient genetic modifications of trypanosomatids, in marker-free conditions. This approach was successfully developed to inactivate, delete, and mutate candidate genes in various stages of the life cycle of T. brucei and T. congolense, and Leishmania promastigotes. The functionality of SpCas9 in these parasites now provides, to the research community working on these parasites, a rapid and efficient method of genome editing, without requiring plasmid construction and selection by antibiotics but requires only cloning and PCR screening of the clones. Importantly, this approach is adaptable to any wild-type parasite.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Ribonucleoproteins , Gene Editing/methods , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Leishmania/genetics , Leishmania/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosoma/genetics , Trypanosoma/metabolism , Transfection
2.
Microb Cell ; 10(10): 204-216, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37786811

ABSTRACT

Phospholipases (PLs) and Lysophospholipases (LysoPLs) are a diverse group of esterases responsible for phospholipid or lysophospholipid hydrolysis. They are involved in several biological processes, including lipid catabolism, modulation of the immune response and membrane maintenance. PLs are classified depending on their site of hydrolysis as PLA1, PLA2, PLC and PLD. In many pathogenic microorganisms, from bacteria to fungi, PLAs and LysoPLs have been described as critical virulence and/or pathogenicity factors. In protozoan parasites, a group containing major human and animal pathogens, growing literature show that PLAs and LysoPLs are also involved in the host infection. Their ubiquitous presence and role in host-pathogen interactions make them particularly interesting to study. In this review, we summarize the literature on PLAs and LysoPLs in several protozoan parasites of medical relevance, and discuss the growing interest for them as potential drug and vaccine targets.

3.
Pathogens ; 11(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36422591

ABSTRACT

A series of novel 2,9-bis[(substituted-aminomethyl)]-4,7-phenyl-1,10-phenanthroline derivatives was designed, synthesized, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani and Trypanosoma brucei brucei). Pharmacological results showed antiprotozoal activity with IC50 values in the sub and µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The substituted diphenylphenanthroline 1l was identified as the most potent antimalarial derivative with a ratio of cytotoxic to antiparasitic activities of 505.7 against the P. falciparum CQ-resistant strain W2. Against the promastigote forms of L. donovani, the phenanthrolines 1h, 1j, 1n and 1o were the most active with IC50 from 2.52 to 4.50 µM. The phenanthroline derivative 1o was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 91 on T. brucei brucei strain. FRET melting and native mass spectrometry experiments evidenced that the nitrogen heterocyclic derivatives bind the telomeric G-quadruplexes of P. falciparum and Trypanosoma. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma could be considered to be possible targets of this kind of nitrogen heterocyclic derivatives, their potential ability to stabilize the parasitic telomeric G-quadruplexes have been determined through the FRET melting assay and by native mass spectrometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...