Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 676
Filter
1.
Front Immunol ; 15: 1412821, 2024.
Article in English | MEDLINE | ID: mdl-39015564

ABSTRACT

Introduction: Plant-based nutritional programming is the concept of exposing fish at very early life stages to a plant-based diet for a short duration to improve physiological responses when exposed to a similar plant-rich diet at a later developmental stage. The mechanisms of action underlying nutritional programming have not been fully deciphered, and the responses may be controlled at multiple levels. Methods: This 22-week study examines gut transcriptional changes after nutritional programming. Triplicate groups of Atlantic salmon were fed with a plant (V) vs. a marine-rich (M, control) diet for 2 weeks (stimulus phase) at the first exogenous feeding. Both stimulus fish groups (M and V fish) were then fed the M diet for 12 weeks (intermediate phase) and lastly fed the V diet (challenge phase) for 6 weeks, generating two dietary regimes (MMV and VMV) across phases. This study used a whole-transcriptome approach to analyse the effects of the V diet at the end of stimulus (short-term effects) and 22 weeks post-first feeding (long-term effects). After the stimulus, due to its developmental stage, the whole intestine was used, whereas, after the challenge, pyloric caeca and middle and distal intestines were examined. Results and discussion: At the stimulus end, genes with increased expression in V fish enriched pathways including regulatory epigenetic responses and lipid metabolism, and genes involved in innate immune response were downregulated. In the middle intestine at the end of the challenge, expression levels of genes of lipid, carbohydrate, and energy metabolism were increased in V fish, while M fish revealed increased expression of genes associated with autoimmune and acute adaptive immune response. The distal intestine of V fish showed increased expression of genes associated with immune response and potential immune tolerance. Conversely, the distal intestine of M fish at challenge revealed upregulation of lipid and carbohydrate metabolic pathways, tissue degeneration, and apoptotic responses. The present study demonstrated nutritional programming-associated changes in the intestinal transcriptome, with altered expression of genes involved in both immune responses and different metabolic processes. While there were limited changes in growth between the groups, the results show that there were transcriptional differences, suggesting a programming response, although the mechanism of this response still requires to be fully elucidated.


Subject(s)
Animal Feed , Salmo salar , Transcriptome , Animals , Salmo salar/immunology , Salmo salar/genetics , Diet, Vegetarian , Animal Nutritional Physiological Phenomena , Gene Expression Profiling , Diet, Plant-Based
2.
Environ Health (Wash) ; 2(7): 441-452, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39049895

ABSTRACT

Although human health impacts of microplastics are not well understood, concern regarding chemical contaminants retained on or within them is growing. Drinking water providers are increasingly asked about these risks, but strategies for evaluating them and the extent of treatment needed to manage them are currently lacking. Microplastics can potentially induce health effects if the concentration of contaminants adsorbed to them exceeds predetermined drinking water guidelines (e.g., Maximum Contaminant Levels). The risk posed by microplastics due to adsorbed contaminants is difficult to determine, but a worst-case scenario can be evaluated by using adsorption capacity. Here, a "Threshold Microplastics Concentration" (TMC) framework is developed to evaluate whether waterborne microplastic concentrations can potentially result in the intake of regulated contaminants on/in microplastics at levels of human health concern and identify treatment targets for managing associated health risk. Exceeding the TMC does not indicate an immediate health risk; it informs the need for detailed risk assessment or further treatment evaluation to ensure particle removal targets are achieved. Thus, the TMC concept and framework provide an updateable, science-based screening tool to determine if there is a need for detailed risk assessment or treatment modification due to waterborne microplastics in supplies used for potable water production.

4.
Anim Microbiome ; 6(1): 38, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951941

ABSTRACT

To promote sustainable aquaculture, the formulation of Atlantic salmon (Salmo salar) feeds has changed in recent decades, focusing on replacing standard marine-based ingredients with plant-based alternatives, increasingly demonstrating successful outcomes in terms of fish performance. However, little is known about how these plant-based diets may impact the gut microbiota at first feeding and onwards. Nutritional programming (NP) is one strategy applied for exposing fish to a plant-based (V) diet at an early stage in life to promote full utilisation of plant-based ingredients and prevent potential adverse impacts of exposure to a plant-rich diet later in life. We investigated the impact of NP on gut microbiota by introducing fish to plant ingredients (V fish) during first feeding for a brief period of two weeks (stimulus phase) and compared those to fish fed a marine-based diet (M fish). Results demonstrated that V fish not only maintained growth performance at 16 (intermediate phase) and 22 (challenge phase) weeks post first feeding (wpff) when compared to M fish but also modulated gut microbiota. PERMANOVA general effects revealed gut microbiota dissimilarity by fish group (V vs. M fish) and phases (stimulus vs. intermediate vs. challenge). However, no interaction effect of both groups and phases was demonstrated, suggesting a sustained impact of V diet (nutritional history) on fish across time points/phases. Moreover, the V diet exerted a significant cumulative modulatory effect on the Atlantic salmon gut microbiota at 16 wpff that was not demonstrated at two wpff, although both fish groups were fed the M diet at 16 wpff. The nutritional history/dietary regime is the main NP influencing factor, whereas environmental and host factors significantly impacted microbiota composition in M fish. Microbial metabolic reactions of amino acid metabolism were higher in M fish when compared to V fish at two wpff suggesting microbiota played a role in digesting the essential amino acids of M feed. The excessive mucin O-degradation revealed in V fish at two wpff was mitigated in later life stages after NP, suggesting physiological adaptability and tolerance to V diet. Future studies are required to explore more fully how the microbiota functionally contributes to the NP.

5.
Water Res ; 259: 121877, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38870891

ABSTRACT

When assessing risk posed by waterborne pathogens in drinking water, it is common to use Monte Carlo simulations in Quantitative Microbial Risk Assessment (QMRA). This method accounts for the variables that affect risk and their different values in a given system. A common underlying assumption in such analyses is that all random variables are independent (i.e., one is not associated in any way with another). Although the independence assumption simplifies the analysis, it is not always correct. For example, treatment efficiency can depend on microbial concentrations if changes in microbial concentrations either affect treatment themselves or are associated with water quality changes that affect treatment (e.g., during/after climate shocks like extreme precipitation events or wildfires). Notably, the effects of erroneous assumptions of independence in QMRA have not been widely discussed. Due to the implications of drinking water safety decisions on public health protection, it is critical that risk models accurately reflect the context being studied to meaningfully support decision-making. This work illustrates how dependence between pathogen concentration and either treatment efficiency or water consumption can impact risk estimates using hypothetical scenarios of relevance to drinking water QMRA. It is shown that the mean and variance of risk estimates can change substantially with different degrees of correlation. Data from a water supply system in Calgary, Canada are also used to illustrate the effect of dependence on risk. Recognizing the difficulty of obtaining data to empirically assess dependence, a framework to guide evaluation of the effect of dependence is presented to enhance support for decision making. This work emphasizes the importance of acknowledging and discussing assumptions implicit to models.


Subject(s)
Decision Making , Drinking Water , Monte Carlo Method , Drinking Water/microbiology , Risk Assessment , Water Microbiology , Water Supply , Models, Theoretical , Water Purification
6.
Food Chem ; 456: 139414, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38901077

ABSTRACT

Atlantic salmon were fed either a diet reflecting current commercial feeds with added oil supplied by a blend of fish oil and rapeseed oil (COM), or a diet formulated with oil from transgenic Camelina sativa containing 20% EPA + DHA (TCO). Salmon were grown from smolt to market size (>3 kg) in sea pens under semi-commercial conditions. There were no differences in growth, feed efficiency or survival between fish fed the TCO or COM diets at the end of the trial. Levels of EPA + DHA in flesh of salmon fed TCO were significantly higher than in fish fed COM. A 140 g fillet from TCO-fed salmon delivered 2.3 g of EPA + DHA, 67% of the weekly requirement level recommended by many health agencies, and 1.5-fold more than the 1.5 g of EPA + DHA for COM-fed fish. Oil from transgenic Camelina supported growth and improved the nutritional quality of farmed salmon in terms of increased "omega-3" supply for human consumers.


Subject(s)
Animal Feed , Brassicaceae , Docosahexaenoic Acids , Eicosapentaenoic Acid , Plant Oils , Plants, Genetically Modified , Salmo salar , Animals , Salmo salar/metabolism , Salmo salar/growth & development , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/metabolism , Animal Feed/analysis , Eicosapentaenoic Acid/analysis , Eicosapentaenoic Acid/metabolism , Brassicaceae/chemistry , Brassicaceae/metabolism , Brassicaceae/growth & development , Plant Oils/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Fish Oils/metabolism , Seawater/chemistry , Aquaculture
7.
J Nucl Cardiol ; : 101884, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761831

ABSTRACT

BACKGROUND: Data on cardiac positron emission tomography (PET) in liver transplantation (LT) candidates are limited with no prior study accounting for poorly metabolized caffeine reducing stress perfusion. METHOD: Consecutive LT candidates (n = 114) undergoing cardiac rest/stress PET were instructed to abstain from caffeine for 2 days extended to 5 and 7 days. Due to persistently high prevalence of measurable blood caffeine after 5-day caffeine abstinence, dipyridamole (n = 41) initially used was changed to dobutamine (n = 73). Associations of absolute flow, coronary flow reserve (CFR), detectable blood caffeine, and Modified End-Stage Liver Disease (MELD) score for liver failure severity were evaluated. Coronary flow data of LT candidates were compared to non-LT control group (n = 102 for dipyridamole, n = 29 for dobutamine). RESULTS: Prevalence of patients with detectable blood caffeine was 63.3%, 36.7% and 33.3% after 2-, 5- and 7-day of caffeine abstinence, respectively. MELD score was associated with detectable caffeine (odd ratio 1.18,P < 0.001). CFR was higher during dipyridamole stress without-caffeine versus with-caffeine (2.22 ± 0.80 vs 1.55 ± 0.37,P = 0.048) but lower than dobutamine stress (2.22 ± 0.80 vs 2.82 ± 1.02,P = 0.026). Mediation analysis suggested that the dominant association between CFR and MELD score in dipyridamole group derived from caffeine-impaired CFR and liver failure/caffeine interaction. CFR in LT candidates was lower than non-LT control population in both dipyridamole and dobutamine group. CONCLUSION: We demonstrate exceptionally high prevalence of detectable blood caffeine in LT candidates undergoing stress PET myocardial perfusion imaging resulting in reduced CFR with dipyridamole compared to dobutamine. The delayed caffeine clearance in LT candidates makes dobutamine a preferred stress agent in this population.

8.
J Nurs Adm ; 54(6): 333-340, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38767524

ABSTRACT

OBJECTIVE: To examine the extent to which Veterans Health Administration (VHA) Patient-Aligned Care Team (PACT) members have a shared understanding/ agreement upon and enact responsibilities within the team. BACKGROUND: The PACT model focuses on team-based care management. However, lack of a shared understanding of team-based care management roles and responsibilities makes system-wide implementation a challenge. METHODS: Quantitative and qualitative analysis of national survey data collected in 2022 from primary care personnel working in a VHA-affiliated primary care facility. RESULTS: Significant discrepancies exist in responses about what core team members say they do and what others perceive they should be doing, indicating either a lack of agreement, knowledge, or training about what core team members should do. CONCLUSIONS: Successful implementation of a team-based model requires adequate support and training for teamwork including shared mental models to work according to their clinical competency. Clear guidance and communication of expectations are critical for role clarity.


Subject(s)
Patient Care Team , Patient-Centered Care , Primary Health Care , United States Department of Veterans Affairs , Humans , United States , Patient Care Team/organization & administration , Attitude of Health Personnel , Male , Female
9.
Nat Commun ; 15(1): 3974, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730230

ABSTRACT

Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of nine different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.


Subject(s)
High-Throughput Nucleotide Sequencing , Immunoglobulin Fab Fragments , Mutation , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , High-Throughput Nucleotide Sequencing/methods , Protein Engineering/methods , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Complementarity Determining Regions/genetics , Complementarity Determining Regions/chemistry , Antibody Affinity , Antigens/immunology , Antigens/genetics
10.
ACS ES T Water ; 4(4): 1335-1345, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633370

ABSTRACT

Despite the global importance of forested watersheds as sources of drinking water, few studies have examined the effects of forestry on drinking water treatability. Relatively little is known about how the interaction between landscape variation and flow impacts source water quality and what this interaction means for drinking water treatability. To address this knowledge gap, we examined variability in sediments, dissolved organic matter, and disinfection byproduct formation potentials (DBP-FPs) across a range of flow conditions in four small watersheds with contrasting forest harvest histories and soil characteristics on Vancouver Island. Storm event-driven change in streamflow was the primary driver of water quality and DBP-FPs at our sites, with greater changes during stormflow (e.g., a 3-fold increase in dissolved organic carbon concentrations) than those across contrasting watersheds. Flow-driven changes in water quality and DBP-FPs were not significantly different across watersheds with different harvest histories; muted responses may be attributed to widespread second growth forests (i.e., recent harvesting effects may be confounded by historical harvest), forestry practices (e.g., slash burning), or soils with low organic carbon storage. This study suggests that variation in hydrology predominates over harvest history and soil characteristics to drive water quality and DBP-FPs on the east coast of Vancouver Island.

11.
Cureus ; 16(3): e56650, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38646208

ABSTRACT

Background Bronchopulmonary dysplasia (BPD) is a significant complication in extremely preterm infants. Therefore, early diagnosis of BPD is important for planning treatment strategies. In this study, we aimed to assess the predictive efficacy of the Respiratory Severity Score (RSS) in determining severe BPD or death outcomes in very preterm infants. Methodology This retrospective study included preterm infants born with a gestational age of ≤30 weeks. The inclusion criteria comprised individuals who were mechanically ventilated (<1 week) during the first four weeks of life. Any patients who died during the first seven days of life were excluded. RSS values were recorded on days 3, 14, 21, and 28 of life. Multivariate logistic regression was used to identify a correlation between RSS and patient outcomes. Results A total of 154 infants were included in the analysis, of whom 82 (53.24%) developed severe BPD and 38 (24.67%) died. RSS was higher in patients who either died or developed severe BPD compared to those who survived. The multivariate logistic regression analysis revealed that RSSs at postnatal day 14 (odds ratio (OR) = 3.970; 95% confidence interval (CI) = 1.114-14.147; p < 0.05), day 21 (OR = 6.201; 95% CI = 1.937-19.851; p < 0.05), and day 28 (OR = 8.925; 95% CI = 3.331-28.383; p < 0.05) was significantly associated with a higher risk of death or severe BPD. Conclusions The findings of the present study revealed that RSS can help predict the risk of severe BPD in very preterm infants.

12.
New Phytol ; 242(6): 2411-2429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659154

ABSTRACT

Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.


Subject(s)
Bryophyta , Climate Change , Nitrogen Cycle , Water , Bryophyta/physiology , Water/metabolism , Carbon Cycle , Carbon/metabolism , Nitrogen/metabolism , Ecosystem
14.
Glob Ment Health (Camb) ; 11: e35, 2024.
Article in English | MEDLINE | ID: mdl-38572262

ABSTRACT

Migrant mental health is a pressing public health issue with wide-ranging implications. Many randomized controlled trials (RCTs) have been conducted in this population to assess the effects of psychosocial interventions. However, the available evidence is characterized by controversy and fragmentation, with studies focusing on different migrant populations, interventions, outcomes, delivery modalities and settings. Aiming to promote systematic reviews of the effectiveness of psychosocial interventions in different migrant groups, we have developed a living database of existing RCTs. The development of the database provides an opportunity to map the existing RCT evidence in this population. A total of 135 studies involving 24,859 participants were included in the living database. The distribution of studies by year of publication aligns with the increasing global migrant population in recent years. Most studies focus primarily on adult participants, with a limited representation of children and adolescents, and a prevalence of female participants, which is consistent with epidemiological data, except for older adults, who are underrepresented in research. Studies predominantly focus on refugees and asylum seekers, likely due to their elevated risk of mental health issues, despite the substantial presence of economic migrants worldwide. While studies mainly involve migrants from the Middle East and East Asia, epidemiological data suggest a broader geographic representation, with migrants coming from Eastern Europe, Latin America and South Asia. The present descriptive analysis of RCTs on mental health and psychosocial interventions for migrant populations provides valuable insights into the existing research landscape. It should be used to inform future research efforts, ensuring that studies are more representative of the global migrant population and more responsive to the mental health needs of migrants in different contexts.

15.
Anal Chem ; 96(16): 6245-6254, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38593420

ABSTRACT

Wastewater treatment plants (WWTPs) serve a pivotal role in transferring microplastics (MPs) from wastewater to sludge streams, thereby exerting a significant influence on their release into the environment and establishing wastewater and biosolids as vectors for MP transport and delivery. Hence, an accurate understanding of the fate and transport of MPs in WWTPs is vital. Enumeration is commonly used to estimate concentrations of MPs in performance evaluations of treatment processes, and risk assessment also typically involves MP enumeration. However, achieving high accuracy in concentration estimates is challenging due to inherent uncertainty in the analytical workflow to collect and process samples and count MPs. Here, sources of random error in MP enumeration in wastewater and other matrices were investigated using a modeling approach that addresses the sources of error associated with each step of the analysis. In particular, losses are reflected in data analysis rather than merely being measured as a validation step for MP extraction methods. A model for addressing uncertainty in the enumeration of microorganisms in water was adapted to include key assumptions relevant to the enumeration of MPs in wastewater. Critically, analytical recovery, the capacity to successfully enumerate particles considering losses and counting error, may be variable among MPs due to differences in size, shape, and type (differential analytical recovery) in addition to random variability between samples (nonconstant analytical recovery). Accordingly, differential analytical recovery among the categories of MPs was added to the existing model. This model was illustratively applied to estimate MP concentrations from simulated data and quantify uncertainty in the resulting estimates. Increasing the number of replicates, counting categories of MPs separately, and accounting for both differential and nonconstant analytical recovery improved the accuracy of MP enumeration. This work contributes to developing guidelines for analytical procedures quantifying MPs in diverse types of samples and provides a framework for enhanced interpretation of enumeration data, thereby facilitating the collection of more accurate and reliable MP data in environmental studies.

16.
Elife ; 132024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597390

ABSTRACT

Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.


Subject(s)
Alternative Splicing , Exons , Neurons , Polypyrimidine Tract-Binding Protein , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Exons/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Neurons/metabolism , Phosphorylation , Polypyrimidine Tract-Binding Protein/metabolism , Polypyrimidine Tract-Binding Protein/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
17.
Brain Behav Immun ; 118: 287-299, 2024 May.
Article in English | MEDLINE | ID: mdl-38461955

ABSTRACT

Recent findings link cognitive impairment and inflammatory-immune dysregulation in schizophrenia (SZ) and bipolar (BD) spectrum disorders. However, heterogeneity and translation between the periphery and central (blood-to-brain) mechanisms remains a challenge. Starting with a large SZ, BD and healthy control cohort (n = 1235), we aimed to i) identify candidate peripheral markers (n = 25) associated with cognitive domains (n = 9) and elucidate heterogenous immune-cognitive patterns, ii) evaluate the regulation of candidate markers using human induced pluripotent stem cell (iPSC)-derived astrocytes and neural progenitor cells (n = 10), and iii) evaluate candidate marker messenger RNA expression in leukocytes using microarray in available data from a subsample of the main cohort (n = 776), and in available RNA-sequencing deconvolution analysis of postmortem brain samples (n = 474) from the CommonMind Consortium (CMC). We identified transdiagnostic subgroups based on covariance between cognitive domains (measures of speed and verbal learning) and peripheral markers reflecting inflammatory response (CRP, sTNFR1, YKL-40), innate immune activation (MIF) and extracellular matrix remodelling (YKL-40, CatS). Of the candidate markers there was considerable variance in secretion of YKL-40 in iPSC-derived astrocytes and neural progenitor cells in SZ compared to HC. Further, we provide evidence of dysregulated RNA expression of genes encoding YKL-40 and related signalling pathways in a high neuroinflammatory subgroup in the postmortem brain samples. Our findings suggest a relationship between peripheral inflammatory-immune activity and cognitive impairment, and highlight YKL-40 as a potential marker of cognitive functioning in a subgroup of individuals with severe mental illness.


Subject(s)
Bipolar Disorder , Induced Pluripotent Stem Cells , Humans , Chitinase-3-Like Protein 1 , Bipolar Disorder/complications , Neuropsychological Tests , Brain , Cognition , RNA
18.
Sci Rep ; 14(1): 5327, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438515

ABSTRACT

Toxoplasma gondii (TOXO) infection typically results in chronic latency due to its ability to form cysts in the brain and other organs. Latent toxoplasmosis could promote innate immune responses and impact brain function. A large body of evidence has linked TOXO infection to severe mental illness (SMI). We hypothesized that TOXO immunoglobulin G (IgG) seropositivity, reflecting previous infection and current latency, is associated with increased circulating neuron-specific enolase (NSE), a marker of brain damage, and interleukin-18 (IL-18), an innate immune marker, mainly in SMI. We included 735 patients with SMI (schizophrenia or bipolar spectrum) (mean age 32 years, 47% women), and 518 healthy controls (HC) (mean age 33 years, 43% women). TOXO IgG, expressed as seropositivity/seronegativity, NSE and IL-18 were measured with immunoassays. We searched for main and interaction effects of TOXO, patient/control status and sex on NSE and IL-18. In the whole sample as well as among patients and HC separately, IL-18 and NSE concentrations were positively correlated (p < 0.001). TOXO seropositive participants had significantly higher NSE (3713 vs. 2200 pg/ml, p < 0.001) and IL-18 levels (1068 vs. 674 pg/ml, p < 0.001) than seronegative participants, and evaluation within patients and HC separately showed similar results. Post-hoc analysis on cytomegalovirus and herpes simplex virus 1 IgG status showed no associations with NSE or IL-18 which may suggest TOXO specificity. These results may indicate ongoing inflammasome activation and neuronal injury in people with TOXO infections unrelated to diagnosis.


Subject(s)
Toxoplasma , Toxoplasmosis , Humans , Female , Adult , Male , Inflammasomes , Interleukin-18 , Immunoglobulin G
19.
Animals (Basel) ; 14(4)2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38396563

ABSTRACT

Tenebrio molitor (TM) is considered as one of the most promising protein sources for replacing fish meal in aquafeeds, among other things because it is rich in protein, a good source of micronutrients and has a low carbon footprint and land use. However, the main drawback of TM is its fatty acid profile, in particular its low content of n-3 PUFA. This study evaluates the effects of partially replacing plant or marine-derived with full-fat TM meal at two different levels on growth performance and lipid profiles of Senegalese sole (Solea senegalensis). For this purpose, a control diet (CTRL) and four experimental isoproteic (53%) and isolipidic (16%) diets were formulated containing 5 and 10% TM meal replacing mostly fish meal (FM5 and FM10), or 10 and 15% TM meal replacing mostly plant meal (PP10 and PP15). Fish (215 g) were fed at 1% of their body weight for 98 days. The final body weight of fish fed the experimental diets containing TM meal was not different from that of fish fed the CTRL diet (289 g). However, the inclusion of TM meal resulted in a gradual improvement in growth rate and feed efficiency in both cases (replacement of fish or plant meals), and significant differences in specific growth rate (SGR) were observed between fish fed the CTRL diet (SGR = 0.30% day-1) and those fed diets with the highest TM meal content (PP15; SGR = 0.35% day-1). The experimental groups did not show any differences in the protein content of the muscle (19.6% w/w). However, significant differences were observed in the total lipid content of the muscle, with the FM10, PP10, and PP15 groups having the lowest muscle lipid contents (2.2% ww). These fish also showed the lowest neutral lipid content in muscle (6.6% dw), but no differences were observed in the total phospholipid content (2.6% dw). Regarding the fatty acid profile, fish fed FM10, PP10 and PP15 had lower levels of linoleic acid (18:2n-6) and higher levels of oleic acid (18:1n-9) in liver and muscle compared to fish fed CTRL. However, no differences were found between fish fed CTRL and TM-based diets for docosahexaenoic acid (22:6n-3) and total n-3 PUFA in liver and muscle. In conclusion, our study demonstrated that full-fat TM inclusion up to 15% in S. senegalensis diets had no negative effects or even some positive effects on fish survival, growth performance, nutrient utilization and flesh quality.

20.
Water Res ; 252: 121199, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38330712

ABSTRACT

Cyanobacteria increasingly threaten recreational water use and drinking water resources globally. They require dynamic monitoring to account for variability in their distribution arising from diel cycles associated with oscillatory vertical migration. While this has been discussed in marine and eutrophic freshwater contexts, reports of diurnal vertical migration of cyanobacteria in oligotrophic freshwater lakes are scant. Typical monitoring protocols do not reflect these dynamics and frequently focus only on surface water sampling approaches, and either ignore sampling time or recommend large midday timeframes (e.g., 10AM-3PM), thereby preventing accurate characterization of cyanobacterial community dynamics. To evaluate the impact of diurnal migrations and water column stratification on cyanobacterial abundance and composition, communities were characterized in a shallow well-mixed lake interconnected to a thermally stratified lake in the Turkey Lakes Watershed (Ontario, Canada) using amplicon sequencing of the 16S rRNA gene across a multi-time point sampling series in 2018 and 2022. This work showed that cyanobacteria are present in oligotrophic lakes and their community structure varies (i) diurnally, (ii) across the depth of the water column, (iii) interannually within the same lake and (iv) between different lakes that are closely interconnected within the same watershed. It underscored the need for integrating multi-timepoint, multi-depth discrete sampling guidance into lake and reservoir monitoring programs to describe cyanobacteria community dynamics and signal change to inform risk management associated with the potential for cyanotoxin production. Ignoring variability in cyanobacterial community dynamics (such as that reported herein) and reducing sample numbers can lead to a false sense of security and missed opportunities to identify and mitigate changes in trophic status and associated risks such as toxin or taste and odor production, especially in sensitive, oligotrophic systems.


Subject(s)
Cyanobacteria , RNA, Ribosomal, 16S , Lakes/chemistry , Water , Ontario , Eutrophication
SELECTION OF CITATIONS
SEARCH DETAIL
...