Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Biomedicines ; 12(5)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38790901

ABSTRACT

Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyperglycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant environment through NADPH oxidase activation and generation of high levels of reactive oxygen species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test drugs that selectively inhibit the MGO-AGEs-RAGE signaling, aiming to reduce the manifestations of diabetes-associated bladder dysfunction. This review summarizes the current literature on the role of MGO-AGEs-RAGE-ROS axis in diabetes-associated bladder dysfunction. Drugs that directly inactivate MGO and ameliorate bladder dysfunction are also reviewed here.

2.
Clin Exp Pharmacol Physiol ; 51(4): e13851, 2024 04.
Article in English | MEDLINE | ID: mdl-38452757

ABSTRACT

Benign prostatic hyperplasia (BPH) is characterised by increases in prostate volume and contraction. Downregulation of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signalling pathway contributes to prostate dysfunctions. Previous studies in cancer cells or vessels have shown that the epigenetic mechanisms control the gene and protein expression of the enzymes involved in the production of NO and cGMP. This study is aimed to evaluate the effect of a 2-week treatment of 5-azacytidine (5-AZA), a DNA-methyltransferase inhibitor, in the prostate function of mice fed with a high-fat diet. Functional, histological, biochemical and molecular assays were carried out. Obese mice presented greater prostate weight, α-actin expression and contractile response induced by the α-1adrenoceptors agonist. The relaxation induced by the NO-donor and the protein expression of endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) were significantly decreased in the prostate of obese mice. The treatment with 5-AZA reverted the higher expression of α-actin, reduced the hypercontractility state of the prostate and increased the expression of eNOS and sGC and intraprostatic levels of cGMP. When prostates from obese mice treated with 5-AZA were incubated in vitro with inhibitors of the NOS or sGC, the inhibitory effect of 5-AZA was reverted, therefore, showing the involvement of NO and cGMP. In conclusion, our study paves the way to develop or repurpose therapies that recover the expression of eNOS and sGC and, hence, to improve prostate function in BPH.


Subject(s)
Nitric Oxide , Prostatic Hyperplasia , Male , Humans , Mice , Animals , Nitric Oxide/metabolism , Guanylate Cyclase/metabolism , Prostate/metabolism , Mice, Obese , Guanosine Monophosphate/metabolism , Azacitidine/metabolism , Prostatic Hyperplasia/metabolism , Actins/metabolism , Cyclic GMP/metabolism
3.
Life Sci ; 328: 121906, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37394096

ABSTRACT

AIMS: Melatonin is known to inhibit platelet aggregation induced by arachidonic acid (AA). In the present study we investigated whether agomelatine (Ago), an antidepressant with agonist activity at melatonin receptor 1 (MT1) and MT2 could reduce platelets aggregation and adhesion. MAIN METHODS: Human platelets from healthy donors were used to test the in vitro effects of Ago in the presence of different platelet activators. We performed aggregation and adhesion assays, thromboxane B2 (TxB2), cAMP and cGMP measurements, intra-platelet calcium registration and flow cytometry assays. KEY FINDINGS: Our data revealed that different concentrations of Ago reduced AA- and collagen-induced human platelet aggregation in vitro. Ago also reduced AA-induced increase in thromboxane B2 (TxB2) production, intracellular calcium levels and P-selectin expression at plasma membrane. The effects of Ago in AA-activated platelets were likely dependent on MT1 as they were blocked by luzindole (a MT1/MT2 antagonist) and mimicked by the MT1 agonist UCM871 in a luzindole-sensitive manner. The MT2 agonist UCM924 was also able to inhibit platelet aggregation, but this response was not affected by luzindole. On the other hand, although UCM871 and UCM924 reduced collagen-induced platelet aggregation and adhesion, inhibition of collagen-induced platelet aggregation by Ago was not mediated by melatonin receptors because it was not affected by luzindole. SIGNIFICANCE: The present data show that Ago suppresses human platelet aggregation and suggest that this antidepressant may have the potential to prevent atherothrombotic ischemic events by reducing thrombus formation and vessel occlusion.


Subject(s)
Calcium , Platelet Aggregation , Humans , Receptors, Melatonin/metabolism , Calcium/metabolism , Blood Platelets/metabolism , Collagen/metabolism , Antidepressive Agents/pharmacology , Thromboxanes/metabolism , Thromboxane B2/metabolism , Thromboxane B2/pharmacology
4.
Front Pharmacol ; 14: 1145860, 2023.
Article in English | MEDLINE | ID: mdl-37492091

ABSTRACT

Background: The prostate gland is surrounded by periprostatic adipose tissue (PPAT) that can release mediators that interfere in prostate function. In this study, we examined the effect of periprostatic adipose tissue supernatant obtained from obese mice on prostate reactivity in vitro and on the viability of human prostatic epithelial cell lines. Methods: Male C57BL/6 mice were fed a standard or high-fat diet after which PPAT was isolated, incubated in Krebs-Henseleit solution for 30 min (without prostate) or 60 min (with prostate), and the supernatant was then collected and screened for biological activity. Total nitrate and nitrite (NOx-) and adenosine were quantified, and the supernatant was then collected and screened for biological activity. NOx- and adenosine were quantified. Concentration-response curves to phenylephrine (PE) were obtained in prostatic tissue from lean and obese mice incubated with or without periprostatic adipose tissue. In some experiments, periprostatic adipose tissue was co-incubated with inhibitors of the nitric oxide (NO)-cyclic guanosine monophosphate pathway (L-NAME, 1400W, ODQ), adenylate cyclase (SQ22536) or with adenosine A2A (ZM241385), and A2B (MRS1754) receptor antagonists. PNT1-A (normal) and BPH-1 (hyperplasic) human epithelial cells were cultured and incubated with supernatant from periprostatic adipose tissue for 24, 48, or 72 h in the absence or presence of these inhibitors/antagonists, after which cell viability and proliferation were assessed. Results: The levels of NOx- and adenosine were significantly higher in the periprostatic adipose tissue supernatant (30 min, without prostate) when compared to the vehicle. A trend toward an increase in the levels of NOX was observed after 60 min. PPAT supernatant from obese mice significantly reduced the PE-induced contractions only in prostate from obese mice. The co-incubation of periprostatic adipose tissue with L-NAME, 1400W, ODQ, or ZM241385 attenuated the anticontractile activity of the periprostatic adipose tissue supernatant. Incubation with the supernatant of periprostatic adipose tissue from obese mice significantly increased the viability of PNT1-A cells and attenuated expression of the apoptosis marker protein caspase-3 when compared to cells incubated with periprostatic adipose tissue from lean mice. Hyperplastic cells (BPH-1) incubated with periprostatic adipose tissue from obese mice showed greater proliferation after 24 h, 48 h, and 72 h compared to cells incubated with culture medium alone. BPH-1 cell proliferation in the presence of PPAT supernatant was attenuated by NO-signaling pathway inhibitors and by adenosine receptor antagonists after 72 h. Conclusion: NO and adenosine are involved in the anticontractile and pro-proliferative activities of periprostatic adipose tissue supernatant from obese mice. More studies are needed to determine whether the blockade of NO and/or adenosine derived from periprostatic adipose tissue can improve prostate function.

5.
Cancers (Basel) ; 15(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36900358

ABSTRACT

Malignant glioma is the most common and deadly brain tumor. A marked reduction in the levels of sGC (soluble guanylyl cyclase) transcript in the human glioma specimens has been revealed in our previous studies. In the present study, restoring the expression of sGCß1 alone repressed the aggressive course of glioma. The antitumor effect of sGCß1 was not associated with enzymatic activity of sGC since overexpression of sGCß1 alone did not influence the level of cyclic GMP. Additionally, sGCß1-induced inhibition of the growth of glioma cells was not influenced by treatment with sGC stimulators or inhibitors. The present study is the first to reveal that sGCß1 migrated into the nucleus and interacted with the promoter of the TP53 gene. Transcriptional responses induced by sGCß1 caused the G0 cell cycle arrest of glioblastoma cells and inhibition of tumor aggressiveness. sGCß1 overexpression impacted signaling in glioblastoma multiforme, including the promotion of nuclear accumulation of p53, a marked reduction in CDK6, and a significant decrease in integrin α6. These anticancer targets of sGCß1 may represent clinically important regulatory pathways that contribute to the development of a therapeutic strategy for cancer treatment.

6.
Andrology ; 11(3): 611-620, 2023 03.
Article in English | MEDLINE | ID: mdl-36375168

ABSTRACT

BACKGROUND: Intracellular levels of cyclic nucleotides can also be controlled by the action of multidrug resistance protein types 4 (MRP4) and 5 (MRP5). To date, no studies evaluated the role of their inhibition in an animal model of erectile dysfunction (ED). OBJECTIVES: To evaluate the effect of a 2-week treatment with MK571, an inhibitor of the efflux of cyclic nucleotides in the ED of obese mice. MATERIALS AND METHODS: Mice were divided in three groups: (i) lean, (ii) obese, and (iii) obese + MK571. The corpus cavernosum (CC) were isolated, and concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and tadalafil in addition to electrical field stimulation (EFS) were carried out in phenylephrine pre-contracted tissues. Expression of ABCC4 and ABCC5, intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), the protein levels for pVASPSer157 and pVASPSer239 , and the intracavernous pressure (ICP) were also determined. The intracellular and extracellular (supernatant) ratios in CC from obese and lean stimulated with a cGMP-increasing substance (BAY 58-2667) in the absence and presence of MK571 (20 µM, 30 min) were also assessed. RESULTS: The treatment with MK571 completely reversed the lower relaxing responses induced by EFS, ACh, SNP, and tadalafil observed in obese mice CC in comparison with untreated obese mice. Cyclic GMP and p-VASPSer239 expression were significantly reduced in CC from obese groups. MK571 promoted a sixfold increase in cGMP without interfering in the protein expression of p-VASPSer239 . Neither the cAMP levels nor p-VASPSer157 were altered in MK571-treated animals. The ICP was ∼50% lower in obese than in the lean mice; however, the treatment with MK571 fully reversed this response. Expressions of ABCC4 and ABCC5 were not different between groups. The intra/extracellular ratio of cGMP was similar in CC from obese and lean mice stimulated with BAY 58-2667. CONCLUSIONS: The MRPs inhibition by MK571 favored the accumulation of cGMP in the smooth muscle cells, thus improving the smooth muscle relaxation and the erectile function in obese mice.


Subject(s)
Erectile Dysfunction , Male , Humans , Mice , Animals , Erectile Dysfunction/drug therapy , ATP Binding Cassette Transporter, Subfamily B/therapeutic use , Tadalafil/pharmacology , Tadalafil/therapeutic use , Mice, Obese , Nitroprusside/pharmacology , Nitroprusside/metabolism , Nitroprusside/therapeutic use , Cyclic GMP/metabolism , Acetylcholine/pharmacology , Acetylcholine/therapeutic use , Obesity
7.
Biochem Pharmacol ; 205: 115263, 2022 11.
Article in English | MEDLINE | ID: mdl-36174768

ABSTRACT

The development of essential hypertension involves several factors. Vascular dysfunction, characterized by endothelial dysfunction, low-grade inflammation and structural remodeling, plays an important role in the initiation and maintenance of essential hypertension. Although the mechanistic pathways by which essential hypertension develops are poorly understood, several pharmacological classes available on the clinical settings improve blood pressure by interfering in the cardiac output and/or vascular function. This review is divided in two major sections. The first section depicts the major molecular pathways as renin angiotensin aldosterone system (RAAS), endothelin, nitric oxide signalling pathway and oxidative stress in the development of vascular dysfunction. The second section describes the role of some pharmacological classes such as i) RAAS inhibitors, ii) dual angiotensin receptor-neprilysin inhibitors, iii) endothelin-1 receptor antagonists, iv) soluble guanylate cyclase modulators, v) phosphodiesterase type 5 inhibitors and vi) sodium-glucose cotransporter 2 inhibitors in the context of hypertension. Some classes are already approved in the treatment of hypertension, but others are not yet approved. However, due to their potential benefits these classes were included.


Subject(s)
Antihypertensive Agents , Hypertension , Humans , Antihypertensive Agents/pharmacology , Muscle, Smooth, Vascular/metabolism , Soluble Guanylyl Cyclase/metabolism , Neprilysin/metabolism , Nitric Oxide/metabolism , Essential Hypertension/drug therapy , Essential Hypertension/metabolism , Phosphodiesterase 5 Inhibitors/therapeutic use , Receptor, Endothelin A/metabolism , Hypertension/metabolism , Renin-Angiotensin System , Endothelins/metabolism , Endothelins/pharmacology , Endothelins/therapeutic use , Endothelin Receptor Antagonists/pharmacology , Receptors, Angiotensin/metabolism , Receptors, Angiotensin/therapeutic use , Glucose/metabolism , Sodium/metabolism , Sodium/pharmacology , Sodium/therapeutic use
8.
J Thromb Haemost ; 20(7): 1699-1711, 2022 07.
Article in English | MEDLINE | ID: mdl-35395698

ABSTRACT

BACKGROUND: Thrombotic antiphospholipid syndrome (t-PAPS) is characterized by arterial, venous, or microvascular occlusions, which are explained, in part, by the presence of antiphospholipid (aPL) antibodies. Although there is much evidence indicating that isolated aPL antibodies increase the activity of platelets obtained from healthy volunteers, platelet function in t-PAPS has not been as widely studied. OBJECTIVE: To evaluate platelet reactivity in t-PAPS patients. METHODS: Platelet aggregation, protein expression, and cyclic nucleotide levels were carried out in platelet rich plasma (PRP) or washed platelets (WPs) obtained from t-PAPS or healthy volunteers. RESULTS: ADP-induced aggregation was significantly higher in PRP obtained from t-PAPS than obtained from the control. The protein expression of P2Y12 receptor and Gs alpha was significantly higher and lower, respectively in WPs from t-PAPS patients. In PRP incubated with iloprost or sodium nitroprusside, the residual platelet reactivity induced by ADP was still higher in PRP from t-PAPS than from the control. Lower intracellular levels of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) were observed in unstimulated PRP from t-PAPS patients. The protein expression of soluble guanylate cyclase subunits and phosphodiesterases types 3 and 5 did not differ. The antiplatelet activity of ticagrelor was similar between the groups and cilostazol significantly potentiated this response. Isolated aPL antibodies obtained from t-PAPS patients potentiated ADP-induced aggregation in healthy platelets but did not affect the inhibitory responses induced by iloprost or sodium nitroprusside. CONCLUSIONS: The overexpression of P2Y12 receptor, accompanied by lower levels of cAMP and cGMP levels produced greater amplitude of ADP aggregation in platelets from t-PAPS patients.


Subject(s)
Antiphospholipid Syndrome , Blood Platelets , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/pharmacology , Antiphospholipid Syndrome/metabolism , Blood Platelets/metabolism , Cyclic AMP , Cyclic GMP/metabolism , Humans , Iloprost/metabolism , Iloprost/pharmacology , Nitroprusside/metabolism , Nitroprusside/pharmacology , Platelet Aggregation , Platelet Aggregation Inhibitors/pharmacology , Signal Transduction
9.
Clin Exp Pharmacol Physiol ; 48(11): 1477-1487, 2021 11.
Article in English | MEDLINE | ID: mdl-34343353

ABSTRACT

Mirabegron is a selective ß3-adrenergic receptors agonist, which has been recently shown to improve metabolic health in rodents and humans. In this study, we investigated the effects of 2-week mirabegron treatment on the metabolic parameters of mice with a diet-induced obesity (DIO). C57BL/6JUnib mice were divided into control (CTR) and obese (OB) groups treated with vehicle, and an OB group treated with mirabegron (OB + MIRA). The obese groups were fed a high-fat diet for 12 weeks. Mirabegron (10 mg/kg/day) was administrated orally by gavage from weeks 10-12. After 2 weeks of mirabegron treatment, the energy expenditure was assessed with indirect calorimetry. Blood glucose, insulin, glycerol, free fatty acids (FFA), thiobarbituric acid reactive substance (TBAR), and tumour necrosis factor (TNF)-α levels were also assessed, and the HOMA index was determined. Liver tissue, brown adipose tissue (BAT), and inguinal white adipose tissue (iWAT) samples were collected for histological examination. The protein expressions of uncoupling protein 1 (UCP1) and mitochondrial transcription factor A (TFAM) were assessed using western blotting of the BAT and iWAT samples. In this study, mirabegron increased the energy expenditure and decreased adiposity in OB + MIRA. Increased UCP1 expression in BAT without changes in iWAT was also found. Mirabegron decreased circulating levels of FFA, glycerol, insulin, TNF-α, TBARS and HOMA index. DIO significantly increased the lipid deposits in the liver and BAT, but mirabegron partially reversed this change. Our findings indicate that treatment with mirabegron decreased inflammation and improved metabolism in obese mice. This effect was associated with increased BAT-mediated energy expenditure, but not iWAT beiging, which suggests that mirabegron might be useful for the treatment of obesity and diabetes.


Subject(s)
Adipose Tissue, Brown
10.
Front Pharmacol ; 12: 626155, 2021.
Article in English | MEDLINE | ID: mdl-33643052

ABSTRACT

The lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are highly prevalent worldwide. Clinical and experimental data suggest that the incidence of LUTS-BPH is higher in patients with vascular-related disorders such as in pelvic ischemia, obesity and diabetes as well as in the ageing population. Obesity is an important risk factor that predisposes to glucose intolerance, insulin resistance, dyslipidemia, type 2 diabetes mellitus and cardiovascular disorders. Prospective studies showed that obese men are more likely to develop LUTS-BPH than non-obese men. Yet, men with greater waist circumferences were also at a greater risk of increased prostate volume and prostate-specific antigen than men with lower waist circumference. BPH is characterized by an enlarged prostate and increased smooth muscle tone, thus causing urinary symptoms. Data from experimental studies showed a significant increase in prostate and epididymal adipose tissue weight of obese mice when compared with lean mice. Adipose tissues that are in direct contact with specific organs have gained attention due to their potential paracrine role. The prostate gland is surrounded by periprostatic adipose tissue (PPAT), which is believed to play a paracrine role by releasing growth factors, pro-inflammatory, pro-oxidant, contractile and anti-contractile substances that interfere in prostate reactivity and growth. Therefore, this review is divided into two main parts, one focusing on the role of adipokines in the context of obesity that can lead to LUTS/BPH and the second part focusing on the mediators released from PPAT and the possible pathways that may interfere in the prostate microenvironment.

12.
Food Funct ; 12(2): 802-814, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33393955

ABSTRACT

Alibertia edulis leaf extract is commonly used in folk medicine, with rutin caffeic and vanillic acids being its major compounds. The Alibertia edulis leaf extract was investigated for its pharmacological effects via platelet aggregation, calcium mobilization, cyclic nucleotides levels, vasodilator-stimulated phosphoprotein Ser157 and Ser239 and protein kinase Cß2 phosphorylation, thromboxane B2, cyclooxygenases 1 and 2, docking and molecular dynamics. Alibertia edulis leaf extract significantly inhibited (100-1000 µg mL-1) platelet aggregation induced by different agonists. Arachidonic acid increased levels of calcium and thromboxane B2, phosphorylation of vasodilator-stimulated phosphoprotein Ser157 and Ser239, and protein kinase Cß, which were significantly reduced by Alibertia edulis leaf extract, rutin, and caffeic acid as well mixtures of rutin/caffeic acid. Cyclooxygenase 1 activity was inhibited for Alibertia edulis leaf extract, rutin and caffeic acid. These inhibitions were firsrtly explored by specific stabilization of rutin and caffeic acid compared to diclofenac at the catalytic site from docking score and free-energy dissociation profiles. Then, simulations detailed the rutin interactions close to the heme group and Tyr385, responsible for catalyzing the conversion of arachidonic acid to its products. Our results reveal the antiplatelet aggregation properties of Alibertia edulis leaf extract, rutin and caffeic acid providing pharmacological information about its origin from cyclooxygenase 1 inhibition and its downstream pathway.


Subject(s)
Gene Expression Regulation/drug effects , Plant Extracts/pharmacology , Platelet Aggregation/drug effects , Prostaglandin-Endoperoxide Synthases/metabolism , Rubiaceae/chemistry , Thromboxanes/antagonists & inhibitors , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/administration & dosage , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Adenosine Diphosphate/administration & dosage , Adenosine Diphosphate/pharmacology , Animals , Arachidonic Acid/administration & dosage , Arachidonic Acid/pharmacology , Calcium/metabolism , Collagen/administration & dosage , Collagen/pharmacology , Cyclooxygenase Inhibitors , Humans , Plant Extracts/chemistry , Plant Leaves/chemistry , Thromboxanes/genetics , Thromboxanes/metabolism , Zebrafish
13.
Biochem Pharmacol ; 182: 114276, 2020 12.
Article in English | MEDLINE | ID: mdl-33039417

ABSTRACT

Gliflozins (canagliflozin, dapagliflozin and empagliflozin) are the newest anti-hyperglycemic class and have offered cardiovascular and renal benefits. Because platelets are involved in the atherothrombosis process, this study is aimed to evaluate the direct effect of gliflozins on platelet reactivity. Platelet-rich plasma (PRP) or washed platelets (WP) were obtained from healthy volunteers. Aggregation, flow cytometry for glycoprotein IIb/IIIa, cyclic nucleotides and intracellular calcium levels, Western blot, thromboxane B2 (TXB2) measurement and COX-1 activity were performed in the presence of gliflozins (1-30 µM) alone or in combination with sodium nitroprusside (SNP, 10 or 100 nM) + iloprost (ILO, 0.1 or 1 nM). SGLT2 protein is not expressed on human platelets. Gliflozins produced little inhibitory effect in agonists-induced aggregation and this effect was greatly potentiated by ~10-fold in the presence of SNP + ILO, accompanied by lower levels of TXB2 (58.1 ± 5.1%, 47.1 ± 7.2% and 43.4 ± 9.2% inhibition for canagliflozin, dapagliflozin and empagliflozin, respectively). The activity of COX-1 was not affected by gliflozins. Collagen increased Ca2+ levels and α(IIb)ß(3) activation, both of which were significantly reduced by gliflozins + SNP + ILO. The intracellular levels of cAMP and cGMP and the protein expression of p-VASPSer157 and p-VASPSer239 were not increased by gliflozins while the expression of the serine-threonine kinase, AktSer473 was markedly reduced. Our results showed that the antiplatelet activity of gliflozins were greatly enhanced by nitric oxide and prostacyclin, thus suggesting that the cardiovascular protection seen by this class of drugs could be in part due to platelet inhibition.


Subject(s)
Epoprostenol/administration & dosage , Nitric Oxide/administration & dosage , Platelet Activation/drug effects , Platelet Aggregation/drug effects , Sodium-Glucose Transporter 2 Inhibitors/administration & dosage , Adult , Cells, Cultured , Drug Synergism , Female , Humans , Male , Middle Aged , Platelet Aggregation/physiology , Sodium-Glucose Transporter 2/metabolism , Young Adult
14.
Purinergic Signal ; 16(2): 241-249, 2020 06.
Article in English | MEDLINE | ID: mdl-32458299

ABSTRACT

In corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine. Therefore, our study aims to pharmacologically characterize the effect of guanosine in isolated CC from mice. The penis was isolated and functional and biochemical analyses were carried out. The guanine-based nucleotides GTP, guanosine diphosphate, guanosine monophosphate, and cGMP relaxed mice corpus cavernosum, but the relaxation (90.7 ± 12.5%) induced by guanosine (0.000001-1 mM) was greater than that of the nucleotides (~ 45%, P < 0.05). Guanosine-induced relaxation was not altered in the presence of adenosine type 2A and 2B receptor antagonists. No augment was observed in the intracellular levels of cyclic adenosine monophosphate in tissues stimulated with guanosine. Inhibitors of nitric oxide synthase (L-NAME, 100 µM) and soluble guanylate cyclase (ODQ, 10 µM) produced a significant reduction in guanosine-induced relaxation in all concentrations studied, while in the presence of tadalafil (300 nM), a significant increase was observed. Pre-incubation of guanosine (100 µM) produced a 6.6-leftward shift in tadalafil-induced relaxation. The intracellular levels of cGMP were greater when CC was stimulated with guanosine. Inhibitors of ecto-nucleotidases and xanthine oxidase did not interfere in the response induced by guanosine. In conclusion, our study shows that guanosine relaxes mice CC and opens the possibility to test its role in models of erectile dysfunction.


Subject(s)
Cyclic GMP/metabolism , Guanosine/pharmacology , Nucleosides/metabolism , Animals , Cyclic AMP/metabolism , Erectile Dysfunction/drug therapy , Erectile Dysfunction/metabolism , Guanosine/metabolism , Male , Mice , Mice, Inbred C57BL , Nitric Oxide Synthase/drug effects , Nitric Oxide Synthase/metabolism , Nucleosides/drug effects
15.
Neurourol Urodyn ; 38(5): 1212-1221, 2019 06.
Article in English | MEDLINE | ID: mdl-30932250

ABSTRACT

AIMS: To evaluate the functional and molecular alterations of contractile and relaxant machinery in the bladder and urethra that lead to the underactive bladder (UAB) in old female mice. METHODS: Female young (3-months) and old (18-months) C57BL/6 mice were used. Urodynamic was assessed in awake and anaesthetized mice. Electrical-field stimulation (EFS) and concentration-response curves to contractile and relaxing agents in isolated bladders and urethras were performed. Messenger RNA (mRNA) expressions of muscarinic, adrenergic, and transient receptor potential vanilloid-4 (TRPV4), and of the enzymes tyrosine hydroxylase and neuronal nitric oxide synthase (nNOS) were determined. Bladder cyclic adenosine monophosphate (cAMP) levels were measured. RESULTS: Cystometry in old mice showed incapacity to produce bladder emptying. On filter paper, old mice showed reduced urinary spots. Compared to the young group, bladder contractions induced by EFS and carbachol were lower in old mice. The ß3 -adrenoceptor agonist mirabegron promoted higher bladder relaxation and elevation of cAMP levels in old mice. In old mice urethras, the α1a -adrenoceptor agonist phenylephrine produced higher contractions, but no differences were found for the NO donor sodium nitroprusside-induced relaxations. In old mice, increased mRNA expressions of ß3 - and α1a -adrenoceptors in bladder and urethra were found, respectively, whereas the muscarinic M2 and M3 receptors and ß2 -adrenoceptors did not change between groups. Reduced mRNA expressions of tyrosine hydroxylase and nNOS were found in old mouse urethras. Additionally, TRPV4 expression was reduced in bladder urothelium from old mice. CONCLUSION: Age-associated mouse UAB is the result of autonomic dysfunction at multiple levels leading to the less sensitive and overrelaxed bladder, along with urethral hypercontractility.


Subject(s)
Aging/pathology , Autonomic Nervous System/physiopathology , Urinary Bladder, Underactive/physiopathology , Animals , Cyclic AMP/metabolism , Electric Stimulation , Female , Mice , Mice, Inbred C57BL , Muscle Contraction/drug effects , Receptors, Adrenergic/drug effects , Receptors, Muscarinic/drug effects , Urethra/physiopathology , Urinary Bladder/innervation , Urinary Bladder/physiopathology , Urodynamics
16.
Expert Opin Pharmacother ; 20(8): 929-937, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30901259

ABSTRACT

INTRODUCTION: In men, lower urinary tract symptoms (LUTS) are primarily attributed to benign prostatic hyperplasia (BPH). Therapeutic options are targeted to relax prostate smooth muscle and/or reduce prostate enlargement. Areas covered: This article reviews the major preclinical and clinical data on PDE5 inhibitors with a specific focus on tadalafil. It includes details of the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) - PDE5 pathway in the LUT organs (bladder and prostate) in addition to the available data on tadalafil in patients with LUTS secondary to BPH with or without erectile dysfunction (ED). Expert opinion: Preclinical and clinical data have clearly demonstrated that PDE5 inhibitors induce bladder and prostate relaxation, which contributes to the improvement seen in storage symptoms in both animal models of bladder and prostate hypercontractility. Tadalafil is effective both as a monotherapy and add-on therapy in patients with LUTS secondary to BPH. Furthermore, as LUTS-BPH and ED are urological disorders that commonly coexist in aging men, tadalafil is more advantageous than α1-adrenoceptors and should be used as the first option. Tadalafil is a safe and tolerable therapy and unlike α1- adrenoceptors and 5-alpha reductase inhibitors, which can cause sexual dysfunctions, tadalafil improves sexual function.


Subject(s)
Lower Urinary Tract Symptoms/drug therapy , Prostatic Hyperplasia/drug therapy , Tadalafil/therapeutic use , 5-alpha Reductase Inhibitors/therapeutic use , Animals , Erectile Dysfunction/drug therapy , Humans , Male , Phosphodiesterase 5 Inhibitors/therapeutic use , Sexual Dysfunction, Physiological/drug therapy , Treatment Outcome
17.
J Pharmacol Exp Ther ; 367(1): 138-146, 2018 10.
Article in English | MEDLINE | ID: mdl-30108158

ABSTRACT

The biologic effect of cAMP and cGMP is terminated by phosphodiesterases and multidrug resistance proteins MRP4 and MRP5, which pump cyclic nucleotides out of the cell. Therefore, this study aimed to characterize the role of MRP inhibitor, MK 571 (3-[[[3-[(1E)-2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]propanoic acid), in the bladder, prostate, and urethra of male mice by means of functional assays, protein expression, and cyclic nucleotide quantification. The cumulative addition of MK 571 (1-30 µM) produced only small relaxation responses (approximately 25%) in all studied tissues. In the bladder, isoprenaline/fenoterol and forskolin concentration-dependently relaxed and MK 571 (20 µM) increased the maximal response values by 37% and 24%, respectively. When MK 571 was coincubated with fenoterol or forskolin, intracellular levels of cAMP and protein expression of phospho-vasodilator-stimulated phosphoprotein (p-VASP) Ser157 were significantly greater compared with bladders stimulated with fenoterol or forskolin alone. In the prostate and urethra, sodium nitroprusside concentration-dependently relaxed and MK 571 (20 µM) significantly increased relaxation responses by 70% and 56%, respectively, accompanied by greater intracellular levels of cGMP and protein expression of p-VASP Ser239 in the prostate. Tadalafil and BAY 41-2272 (5-cyclopropyl-2-[1-[(2-fluorophenyl)methyl]-1H-pyrazolo[3,4-b]pyridin-3-yl]-4-pyrimidinamine) also relaxed the prostate and urethra, respectively, and MK 571 markedly enhanced this response. The stable analog of cGMP (8-Br-cGMP) induced concentration-dependent relaxation responses in the prostate and urethra, and MK 571 significantly increased the relaxation response. In conclusion, to our knowledge, this is the first study to show that efflux transporters are physiologically active in the bladder, prostate, and urethra to control intracellular levels of cAMP or cGMP.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Propionates/pharmacology , Prostate/drug effects , Quinolines/pharmacology , Urethra/drug effects , Urinary Bladder/drug effects , Animals , Cell Adhesion Molecules/metabolism , Colforsin/metabolism , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Nitroprusside/pharmacology , Phosphodiesterase Inhibitors/pharmacology , Phosphoproteins/metabolism , Prostate/metabolism , Urethra/metabolism , Urinary Bladder/metabolism
18.
Eur J Pharmacol ; 829: 79-84, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29654782

ABSTRACT

Mirabegron is a ß3-adrenoceptor agonist and released on the marked for the treatment of overactive bladder. Because mirabegron is the only ß3-adrenoceptor agonist available and substances that increase the levels of cyclic adenosine monophosphate (cAMP) inhibit platelet activity, we tested the hypothesis that mirabegron could have antiplatelet activity. Collagen- and thrombin induced platelet aggregation, thromboxane B2 (TXB2) and cyclic nucleotides quantification and calcium (Ca2+) mobilization were determined in the absence and presence of mirabegron in human washed platelets. Our results revealed that mirabegron (10-300 µM) produced significant inhibitions on platelet aggregation induced by collagen- or thrombin, accompanied by greater intracellular levels of cAMP. The ß3-adrenoceptor antagonist L 748,337 (1 µM) and the adenylate cyclase inhibitor, SQ 22,536 (100 µM) reversed the inhibition induced by mirabegron in thrombin-stimulated platelets. The selective antagonists for ß1-and ß2-adrenoceptors, atenolol and ICI 117,551 (3 µM), respectively did not interfere on the inhibition induced by mirabegron. In Fluo-4 loaded platelets, mirabegron reduced the total and intracellular Ca2+ levels. Pre-incubation with mirabegron almost abolished the levels of TXB2. Mirabegron did not augment the intracellular levels of cyclic guanosine monophosphate. In conclusion, mirabegron inhibited human platelet aggregation through cAMP accumulation, thus suggesting that substances that activate ß3-adrenoceptor could be beneficial as adjuvant antiplatelet therapy.


Subject(s)
Acetanilides/pharmacology , Adrenergic beta-3 Receptor Agonists/pharmacology , Cyclic AMP/metabolism , Platelet Aggregation/drug effects , Receptors, Adrenergic, beta-3/metabolism , Thiazoles/pharmacology , Biological Transport/drug effects , Calcium/metabolism , Humans , Thromboxane B2/metabolism
19.
Int. braz. j. urol ; 43(2): 356-366, Mar.-Apr. 2017. tab, graf
Article in English | LILACS | ID: biblio-840829

ABSTRACT

ABSTRACT Purpose To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS), or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), after 5 weeks of partial bladder outlet obstruction (BOO), in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. Materials and Methods C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. Results BOO animals showed increase of non-voiding contractions (NVC) and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. Conclusion It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.


Subject(s)
Animals , Male , Urinary Bladder Neck Obstruction/drug therapy , Nitric Oxide Synthase/antagonists & inhibitors , NG-Nitroarginine Methyl Ester/pharmacology , Enzyme Inhibitors/pharmacology , Lower Urinary Tract Symptoms/drug therapy , Guanidines/pharmacology , Nitric Oxide/antagonists & inhibitors , Pressure , Time Factors , Urination/drug effects , Urination/physiology , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Urinary Bladder Neck Obstruction/physiopathology , Random Allocation , Reproducibility of Results , Treatment Outcome , NG-Nitroarginine Methyl Ester/therapeutic use , Enzyme Inhibitors/therapeutic use , Guanidines/therapeutic use , Mice, Inbred C57BL , Muscle Contraction/drug effects
20.
Int Braz J Urol ; 43(2): 356-366, 2017.
Article in English | MEDLINE | ID: mdl-28328190

ABSTRACT

PURPOSE: To investigate the lower urinary tract changes in mice treated with L-NAME, a non-selective competitive inhibitor of nitric oxide synthase (NOS), or aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), after 5 weeks of partial bladder outlet obstruction (BOO), in order to evaluate the role of constitutive and non-constitutive NOS in the pathogenesis of this experimental condition. MATERIALS AND METHODS: C57BL6 male mice were partially obstructed and randomly allocated into 6 groups: Sham, Sham + L-NAME, Sham + aminoguanidine, BOO, BOO + L-NAME and BOO + aminoguanidine. After 5 weeks, bladder weight was obtained and cystometry and tissue bath contractile studies were performed. RESULTS: BOO animals showed increase of non-voiding contractions (NVC) and bladder capacity, and also less contractile response to Carbachol and Electric Field Stimulation. Inhibition of NOS isoforms improved bladder capacity and compliance in BOO animals. L-NAME caused more NVC, prevented bladder weight gain and leaded to augmented contractile responses at muscarinic and electric stimulation. Aminoguanidine diminished NVC, but did not avoid bladder weight gain in BOO animals and did not improve contractile responses. CONCLUSION: It can be hypothesized that chronic inhibition of three NOS isoforms in BOO animals leaded to worsening of bladder function, while selective inhibition of iNOS did not improve responses, what suggests that, in BOO animals, alterations are related to constitutive NOS.


Subject(s)
Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Lower Urinary Tract Symptoms/drug therapy , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide/antagonists & inhibitors , Urinary Bladder Neck Obstruction/drug therapy , Animals , Enzyme Inhibitors/therapeutic use , Guanidines/therapeutic use , Male , Mice, Inbred C57BL , Muscle Contraction/drug effects , NG-Nitroarginine Methyl Ester/therapeutic use , Pressure , Random Allocation , Reproducibility of Results , Time Factors , Treatment Outcome , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Urinary Bladder Neck Obstruction/physiopathology , Urination/drug effects , Urination/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...