Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem Biol ; 14(2): 156-162, 2018 02.
Article in English | MEDLINE | ID: mdl-29251719

ABSTRACT

Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized because of challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, and sulfotransferases, as well as other glycan-modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one enzyme, the sialyltransferase ST6GalNAcII. Many enzymes were produced at high yields and at similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.


Subject(s)
Gene Expression Profiling , Sialyltransferases/chemistry , Animals , Baculoviridae/metabolism , Crystallography, X-Ray , Cytidine Monophosphate/chemistry , Genetic Vectors , Glycoside Hydrolases/chemistry , Glycosylation , HEK293 Cells , Humans , Insecta , Kinetics , Recombinant Proteins/chemistry , Sulfotransferases/chemistry
2.
J Vis Exp ; (106): e53568, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26779721

ABSTRACT

The art of producing recombinant proteins with complex post-translational modifications represents a major challenge for studies of structure and function. The rapid establishment and high recovery from transiently-transfected mammalian cell lines addresses this barrier and is an effective means of expressing proteins that are naturally channeled through the ER and Golgi-mediated secretory pathway. Here is one protocol for protein expression using the human HEK293F and HEK293S cell lines transfected with a mammalian expression vector designed for high protein yields. The applicability of this system is demonstrated using three representative glycoproteins that expressed with yields between 95-120 mg of purified protein recovered per liter of culture. These proteins are the human FcγRIIIa and the rat α2-6 sialyltransferase, ST6GalI, both expressed with an N-terminal GFP fusion, as well as the unmodified human immunoglobulin G1 Fc. This robust system utilizes a serum-free medium that is adaptable for expression of isotopically enriched proteins and carbohydrates for structural studies using mass spectrometry and nuclear magnetic resonance spectroscopy. Furthermore, the composition of the N-glycan can be tuned by adding a small molecule to prevent certain glycan modifications in a manner that does not reduce yield.


Subject(s)
Glycoproteins/biosynthesis , Recombinant Proteins/biosynthesis , Transfection/methods , Animals , Chromatography, Affinity , Glycoproteins/genetics , Glycoproteins/isolation & purification , HEK293 Cells , Humans , Protein Processing, Post-Translational , Rats , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
3.
J Biol Chem ; 289(48): 33529-42, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25305020

ABSTRACT

Numerous in vivo functional studies have indicated that the dimeric extracellular domain (ECD) of the CaSR plays a crucial role in regulating Ca(2+) homeostasis by sensing Ca(2+) and l-Phe. However, direct interaction of Ca(2+) and Phe with the ECD of the receptor and the resultant impact on its structure and associated conformational changes have been hampered by the large size of the ECD, its high degree of glycosylation, and the lack of biophysical methods to monitor weak interactions in solution. In the present study, we purified the glycosylated extracellular domain of calcium-sensing receptor (CaSR) (ECD) (residues 20-612), containing either complex or high mannose N-glycan structures depending on the host cell line employed for recombinant expression. Both glycosylated forms of the CaSR ECD were purified as dimers and exhibit similar secondary structures with ∼ 50% α-helix, ∼ 20% ß-sheet content, and a well buried Trp environment. Using various spectroscopic methods, we have shown that both protein variants bind Ca(2+) with a Kd of 3.0-5.0 mm. The local conformational changes of the proteins induced by their interactions with Ca(2+) were visualized by NMR with specific (15)N Phe-labeled forms of the ECD. Saturation transfer difference NMR approaches demonstrated for the first time a direct interaction between the CaSR ECD and l-Phe. We further demonstrated that l-Phe increases the binding affinity of the CaSR ECD for Ca(2+). Our findings provide new insights into the mechanisms by which Ca(2+) and amino acids regulate the CaSR and may pave the way for exploration of the structural properties of CaSR and other members of family C of the GPCR superfamily.


Subject(s)
Calcium/chemistry , Protein Multimerization , Receptors, Calcium-Sensing/chemistry , Calcium/metabolism , Glycosylation , HEK293 Cells , Humans , Ligands , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Protein Structure, Tertiary , Receptors, Calcium-Sensing/genetics , Receptors, Calcium-Sensing/metabolism , Structure-Activity Relationship
4.
Plant J ; 80(2): 197-206, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25141999

ABSTRACT

Xylan is the third most abundant glycopolymer on earth after cellulose and chitin. As a major component of wood, grain and forage, this natural biopolymer has far-reaching impacts on human life. This highly acetylated cell wall polysaccharide is a vital component of the plant cell wall, which functions as a molecular scaffold, providing plants with mechanical strength and flexibility. Mutations that impair synthesis of the xylan backbone give rise to plants that fail to grow normally because of collapsed xylem cells in the vascular system. Phenotypic analysis of these mutants has implicated many proteins in xylan biosynthesis; however, the enzymes directly responsible for elongation and acetylation of the xylan backbone have not been unambiguously identified. Here we provide direct biochemical evidence that two Arabidopsis thaliana proteins, IRREGULAR XYLEM 10-L (IRX10-L) and ESKIMO1/TRICOME BIREFRINGENCE 29 (ESK1/TBL29), catalyze these respective processes in vitro. By identifying the elusive xylan synthase and establishing ESK1/TBL29 as the archetypal plant polysaccharide O-acetyltransferase, we have resolved two long-standing questions in plant cell wall biochemistry. These findings shed light on integral steps in the molecular pathways used by plants to synthesize a major component of the world's biomass and expand our toolkit for producing glycopolymers with valuable properties.


Subject(s)
Arabidopsis Proteins/metabolism , Xylans/biosynthesis , Acetylation , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
Glycoconj J ; 31(4): 299-307, 2014 May.
Article in English | MEDLINE | ID: mdl-24748467

ABSTRACT

Green fluorescent proteins (GFPs) and their derivatives are widely used as markers to visualize cells, protein localizations in in vitro and in vivo studies. The use of GFP fusion protein for visualization is generally thought to have negligible effects on cellular function. However, a number of reports suggest that the use of GFP may impact the biological activity of these proteins. Heparin is a glycosaminoglycan (GAG) that interacts with a number of proteins mediating diverse patho-physiological processes. In the heparin-based interactome studies, heparin-binding proteins are often prepared as GFP fusion proteins. In this report, we use surface plasmon resonance (SPR) spectroscopy to study the impact of the GFP tagging on the binding interaction between heparin and a heparin-binding protein, the Roundabout homolog 1 (Robo1). SPR reveals that heparin binds with higher affinity to Robo1 than GFP-tagged Robo1 and through a different kinetic mechanism. A conformational change is observed in the heparin-Robo1 interaction, but not in the heparin-Robo1-GFP interaction. Furthermore the GFP-tagged Robo1 requires a shorter (hexasaccharide) than the tag-free Robo1 (octadecasaccharide). These data demonstrate that GFP tagging can reduce the binding affinity of Robo1 to heparin and hinder heparin binding-induced Robo1 conformation change.


Subject(s)
Green Fluorescent Proteins/metabolism , Heparin/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/metabolism , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Nerve Tissue Proteins/genetics , Protein Binding , Receptors, Immunologic/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Roundabout Proteins
6.
J Clin Invest ; 124(1): 209-21, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24355925

ABSTRACT

Congenital diaphragmatic hernia (CDH) is a common birth malformation with a heterogeneous etiology. In this study, we report that ablation of the heparan sulfate biosynthetic enzyme NDST1 in murine endothelium (Ndst1ECKO mice) disrupted vascular development in the diaphragm, which led to hypoxia as well as subsequent diaphragm hypoplasia and CDH. Intriguingly, the phenotypes displayed in Ndst1ECKO mice resembled the developmental defects observed in slit homolog 3 (Slit3) knockout mice. Furthermore, introduction of a heterozygous mutation in roundabout homolog 4 (Robo4), the gene encoding the cognate receptor of SLIT3, aggravated the defect in vascular development in the diaphragm and CDH. NDST1 deficiency diminished SLIT3, but not ROBO4, binding to endothelial heparan sulfate and attenuated EC migration and in vivo neovascularization normally elicited by SLIT3-ROBO4 signaling. Together, these data suggest that heparan sulfate presentation of SLIT3 to ROBO4 facilitates initiation of this signaling cascade. Thus, our results demonstrate that loss of NDST1 causes defective diaphragm vascular development and CDH and that heparan sulfate facilitates angiogenic SLIT3-ROBO4 signaling during vascular development.


Subject(s)
Heparitin Sulfate/deficiency , Hernias, Diaphragmatic, Congenital , Neovascularization, Physiologic , Sulfotransferases/genetics , Animals , Apoptosis , Cell Hypoxia , Cell Movement , Cell Proliferation , Cell Survival , Diaphragm/abnormalities , Diaphragm/blood supply , Diaphragm/enzymology , Endothelial Cells/enzymology , Female , Genetic Association Studies , Hernia, Diaphragmatic/enzymology , Hernia, Diaphragmatic/genetics , Male , Membrane Proteins/metabolism , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Penetrance , Receptors, Cell Surface , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Signal Transduction , Sulfotransferases/deficiency , Tendons/abnormalities , Tendons/pathology , Vascular Endothelial Growth Factor A/metabolism
7.
Biochimie ; 95(12): 2345-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23994753

ABSTRACT

Roundabout 1 (Robo1) is the cognate receptor for secreted axon guidance molecule, Slits, which function to direct cellular migration during neuronal development and angiogenesis. The Slit2-Robo1 signaling is modulated by heparan sulfate, a sulfated linear polysaccharide that is abundantly expressed on the cell surface and in the extracellular matrix. Biochemical studies have further shown that heparan sulfate binds to both Slit2 and Robo1 facilitating the ligand-receptor interaction. The structural requirements for heparan sulfate interaction with Robo1 remain unknown. In this report, surface plasmon resonance (SPR) spectroscopy was used to examine the interaction between Robo1 and heparin and other GAGs and determined that heparin binds to Robo1 with an affinity of ~650 nM. SPR solution competition studies with chemically modified heparins further determined that although all sulfo groups on heparin are important for the Robo1-heparin interaction, the N-sulfo and 6-O-sulfo groups are essential for the Robo1-heparin binding. Examination of differently sized heparin oligosaccharides and different GAGs also demonstrated that Robo1 prefers to bind full-length heparin chains and that GAGs with higher sulfation levels show increased Robo1 binding affinities.


Subject(s)
Glycosaminoglycans/chemistry , Nerve Tissue Proteins/chemistry , Receptors, Immunologic/chemistry , Glycosaminoglycans/metabolism , Heparin/chemistry , Heparin/metabolism , Nerve Tissue Proteins/metabolism , Oligosaccharides/metabolism , Receptors, Immunologic/metabolism , Surface Plasmon Resonance , Roundabout Proteins
8.
J Biol Chem ; 288(27): 19900-14, 2013 Jul 05.
Article in English | MEDLINE | ID: mdl-23689369

ABSTRACT

Mucin type O-glycosylation is initiated by a large family of polypeptide GalNAc transferases (ppGalNAc Ts) that add α-GalNAc to the Ser and Thr residues of peptides. Of the 20 human isoforms, all but one are composed of two globular domains linked by a short flexible linker: a catalytic domain and a ricin-like lectin carbohydrate binding domain. Presently, the roles of the catalytic and lectin domains in peptide and glycopeptide recognition and specificity remain unclear. To systematically study the role of the lectin domain in ppGalNAc T glycopeptide substrate utilization, we have developed a series of novel random glycopeptide substrates containing a single GalNAc-O-Thr residue placed near either the N or C terminus of the glycopeptide substrate. Our results reveal that the presence and N- or C-terminal placement of the GalNAc-O-Thr can be important determinants of overall catalytic activity and specificity that differ between transferase isoforms. For example, ppGalNAc T1, T2, and T14 prefer C-terminally placed GalNAc-O-Thr, whereas ppGalNAc T3 and T6 prefer N-terminally placed GalNAc-O-Thr. Several transferase isoforms, ppGalNAc T5, T13, and T16, display equally enhanced N- or C-terminal activities relative to the nonglycosylated control peptides. This N- and/or C-terminal selectivity is presumably due to weak glycopeptide binding to the lectin domain, whose orientation relative to the catalytic domain is dynamic and isoform-dependent. Such N- or C-terminal glycopeptide selectivity provides an additional level of control or fidelity for the O-glycosylation of biologically significant sites and suggests that O-glycosylation may in some instances be exquisitely controlled.


Subject(s)
Glycopeptides , Lectins , N-Acetylgalactosaminyltransferases , Catalysis , Glycopeptides/chemistry , Glycopeptides/genetics , Glycopeptides/metabolism , Glycosylation , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism , Protein Structure, Tertiary , Substrate Specificity/physiology , Polypeptide N-acetylgalactosaminyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...