Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Biomed Eng Online ; 23(1): 43, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654246

ABSTRACT

We developed a video-based tool to quantitatively assess the Glabellar Tap Reflex (GTR) in patients with idiopathic Parkinson's disease (iPD) as well as healthy age-matched participants. We also video-graphically assessed the effect of dopaminergic medication on the GTR in iPD patients, as well as the frequency and blinking duration of reflex and non-reflex blinks. The Glabellar Tap Reflex is a clinical sign seen in patients e.g. suffering from iPD. Reliable tools to quantify this sign are lacking. METHODS: We recorded the GTR in 11 iPD patients and 12 healthy controls (HC) with a consumer-grade camera at a framerate of at least 180 images/s. In these videos, reflex and non-reflex blinks were analyzed for blink count and blinking duration in an automated fashion. RESULTS: With our setup, the GTR can be extracted from high-framerate cameras using landmarks of the MediaPipe face algorithm. iPD patients did not habituate to the GTR; dopaminergic medication did not alter that response. iPD patients' non-reflex blinks were higher in frequency and higher in blinking duration (width at half prominence); dopaminergic medication decreased the median frequency (Before medication-HC: p < 0.001, After medication-HC: p = 0.0026) and decreased the median blinking duration (Before medication-HC: p = 0.8594, After medication-HC: p = 0.6943)-both in the direction of HC. CONCLUSION: We developed a quantitative, video-based tool to assess the GTR and other blinking-specific parameters in HC and iPD patients. Further studies could compare the video data to electromyogram (EMG) data for accuracy and comparability, as well as evaluate the specificity of the GTR in patients with other neurodegenerative disorders, in whom the GTR can also be present. SIGNIFICANCE: The video-based detection of the blinking parameters allows for unobtrusive measurement in patients, a safer and more comfortable option.


Subject(s)
Blinking , Parkinson Disease , Video Recording , Humans , Parkinson Disease/physiopathology , Parkinson Disease/drug therapy , Male , Female , Aged , Middle Aged , Image Processing, Computer-Assisted/methods , Case-Control Studies
2.
6.
Sensors (Basel) ; 23(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37430871

ABSTRACT

The healthcare model is shifting towards integrated care approaches. This new model requires patients to be more closely involved. The iCARE-PD project aims to address this need by developing a technology-enabled, home-based, and community-centered integrated care paradigm. A central part of this project is the codesign process of the model of care, exemplified by the active participation of patients in the design and iterative evaluation of three sensor-based technological solutions. We proposed a codesign methodology used for testing the usability and acceptability of these digital technologies and present initial results for one of them, MooVeo. Our results show the usefulness of this approach in testing the usability and acceptability as well as the opportunity to incorporate patients' feedback into the development. This initiative will hopefully help other groups incorporate a similar codesign approach and develop tools that are well adapted to patients' and care teams' needs.


Subject(s)
Digital Technology , Parkinson Disease , Humans , Parkinson Disease/therapy , Learning , Technology
7.
Mov Disord ; 38(2): 185-195, 2023 02.
Article in English | MEDLINE | ID: mdl-36350228

ABSTRACT

Neuromelanin-containing dopaminergic neurons in the substantia nigra pars compacta (SNpc) are the most vulnerable neurons in Parkinson's disease (PD). Recent work suggests that the accumulation of oxidized dopamine and neuromelanin mediate the convergence of mitochondrial and lysosomal dysfunction in patient-derived neurons. In addition, the expression of human tyrosinase in mouse SNpc led to the formation of neuromelanin resulting in the degeneration of nigral dopaminergic neurons, further highlighting the importance of neuromelanin in PD. The potential role of neuromelanin in PD pathogenesis has been supported by epidemiological observations, whereby individuals with lighter pigmentation or cutaneous malignant melanoma exhibit higher incidence of PD. Because neuromelanin and melanin share many functional characteristics and overlapping biosynthetic pathways, it has been postulated that genes involved in skin pigmentation and melanin formation may play a role in the susceptibility of vulnerable midbrain dopaminergic neurons to neurodegeneration. Here, we highlight potential mechanisms that may explain the link between skin pigmentation and PD, focusing on the role of skin pigmentation genes in the pathogenesis of PD. We also discuss the importance of genetic ancestry in assessing the contribution of pigmentation-related genes to risk of PD. © 2022 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Humans , Mice , Animals , Parkinson Disease/pathology , Melanins/metabolism , Skin Pigmentation , Substantia Nigra/metabolism , Dopaminergic Neurons/metabolism
10.
Brain Stimul ; 15(3): 727-736, 2022.
Article in English | MEDLINE | ID: mdl-35490971

ABSTRACT

BACKGROUND: Directional subthalamic stimulation in Parkinson's disease can increase stimulation threshold for adverse effects and widen the therapeutic window. However, selection of programming settings is time consuming, requiring a thorough monopolar clinical review. To overcome this, programming may be guided by intraoperatively recording local field potential beta oscillations (13-35 Hz). OBJECTIVES: 1) Evaluate whether the power of beta oscillations recorded intraoperatively can predict the clinically most effective directional contacts; and 2) assess long-term directional stimulation outcomes between patients programmed based on clinical monopolar review and patients programmed based on beta activity. METHODS: We conducted a non-randomized, prospective study with 24 Parkinson's disease patients divided into two groups. In group A (14 patients, 2016-2018), we investigated whether beta activity in the directional contacts correlated with clinical efficacy. Stimulating parameters were selected according to clinical monopolar review and mean follow-up was 27 months. In group B (10 patients, 2018-2019), stimulating parameters were selected according to beta activity and mean follow-up was 13 months. RESULTS: Neurophysiological results showed a strong correlation between clinical efficacy and the low-beta sub-band. Contacts with highest beta peaks increased the therapeutic window by 25%. Selecting the two contacts with highest beta peaks provided an 82% probability of selecting the best clinical contact. Clinical results showed similar improvements in group A (motor score, 72% reduction; levodopa-equivalent daily dose, 65% reduction) and B (72% and 63% reduction, respectively), maintained at long-term follow-up. CONCLUSIONS: Our results validate the long-term efficacy of directional stimulation guided by intraoperative local field potential beta oscillations.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Deep Brain Stimulation/methods , Humans , Levodopa , Parkinson Disease/therapy , Prospective Studies , Subthalamic Nucleus/physiology
11.
Brain ; 145(3): 1018-1028, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35349639

ABSTRACT

The striatal dopaminergic deficit in Parkinson's disease exhibits a typical pattern, extending from the caudal and dorsal putamen at onset to its more rostral region as the disease progresses. Clinically, upper-limb onset of cardinal motor features is the rule. Thus, according to current understanding of striatal somatotopy (i.e. the lower limb is dorsal to the upper limb) the assumed pattern of early dorsal striatal dopaminergic denervation in Parkinson's disease does not fit with an upper-limb onset. We have examined the topography of putaminal denervation in a cohort of 23 recently diagnosed de novo Parkinson's disease patients and 19 age-/gender-matched healthy subjects assessed clinically and by 18F-DOPA PET; 15 patients were re-assessed after 2 years. There was a net upper-limb predominance of motor features at onset. Caudal denervation of the putamen was confirmed in both the more- and less-affected hemispheres and corresponding hemibodies. Spatial covariance analysis of the most affected hemisphere revealed a pattern of 18F-DOPA uptake rate deficit that suggested focal dopamine loss starting in the posterolateral and intermediate putamen. Functional MRI group-activation maps during a self-paced motor task were used to represent the somatotopy of the putamen and were then used to characterize the decline in 18F-DOPA uptake rate in the upper- and lower-limb territories. This showed a predominant decrement in both hemispheres, which correlated significantly with severity of bradykinesia. A more detailed spatial analysis revealed a dorsoventral linear gradient of 18F-DOPA uptake rate in Parkinson's disease patients, with the highest putamen denervation in the caudal intermediate subregion (dorsoventral plane) compared to healthy subjects. The latter area coincides with the functional representation of the upper limb. Clinical motor assessment at 2-year follow-up showed modest worsening of parkinsonism in the primarily affected side and more noticeable increases in the upper limb in the less-affected side. Concomitantly, 18F-DOPA uptake rate in the less-affected putamen mimicked that recognized on the most-affected side. Our findings suggest that early dopaminergic denervation in Parkinson's disease follows a somatotopically related pattern, starting with the upper-limb representation in the putamen and progressing over a 2-year period in the less-affected hemisphere. These changes correlate well with the clinical presentation and evolution of motor features. Recognition of a precise somatotopic onset of nigrostriatal denervation may help to better understand the onset and progression of dopaminergic neurodegeneration in Parkinson's disease and eventually monitor the impact of putative therapies.


Subject(s)
Parkinson Disease , Child, Preschool , Corpus Striatum/diagnostic imaging , Denervation , Dihydroxyphenylalanine , Dopamine/physiology , Humans , Parkinson Disease/diagnostic imaging , Putamen/diagnostic imaging
12.
Acta Neurol Belg ; 122(1): 75-81, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33566334

ABSTRACT

Headache disorders are the most prevalent neurological conditions in the Sub-Saharan Africa and the second cause of disability. In this study, we analyze the knowledge about headache disorders and their management among Cameroonian healthcare providers. We conducted an interventional study with a prospective cohort design. Cameroonian health care providers from the whole country were invited. The evaluation was based on a questionnaire that was done before and after a 4-day educational course. The study included 42 participants, 52.4% female, aged 36.8 years. Participants treated a median of 240 monthly patients. Headache was reported as the most frequent neurological condition in their clinics (34%). Mean number of neurological patients seen per week was 69.3, among them 20 were headache patients. At baseline, only 35.8% correctly mentioned at least one primary headache, increasing to 78.6% after the course (p = 0.002). Secondary headaches were correctly identified by 19.0% at baseline and 40.5% after the course (p = 0.01). Clinical history was considered sufficient for headache diagnosis by 57.1% before and 78.6% after (p = 0.5). Correct red flags were mentioned at baseline by only 14.3% of participants, increasing to 40.5% after the course (p = 0.005). At baseline, the preferred symptomatic was paracetamol (47.6%) and Non-Steroidal Anti-Inflammatory Drugs (9.5%), changing to 23.8 and 66.7% after the course (p = 0.05 and < 0.001). Headache was reported as the most frequent neurological disorders. Knowledge about primary headache disorders and their etiology was scarce, and the clinical concept of red flags was limited. The acute drug of choice was paracetamol.


Subject(s)
Headache Disorders/therapy , Health Knowledge, Attitudes, Practice , Health Personnel/psychology , Adult , Cameroon , Clinical Competence , Cohort Studies , Female , Headache , Humans , Male , Middle Aged , Migraine Disorders/therapy , Prospective Studies , Surveys and Questionnaires
16.
Mov Disord ; 36(4): 905-915, 2021 04.
Article in English | MEDLINE | ID: mdl-33471950

ABSTRACT

OBJECTIVE: To define the motor onset and progression of Parkinson's disease (PD) in a prospective cohort of early unmedicated patients. METHODS: We enrolled a consecutive cohort of recently diagnosed (<18 months) PD patients with unilateral manifestations using age and gender-matched controls. The most affected body region was determined using various clinical standard metrics and objective quantitative kinematic measurements. Parkinson's Progression Markers Initiative data were used for external validation of the results. RESULTS: Twenty-five drug-naive patients and 21 controls were studied. Upper limbs were (92%) the most affected body region at onset as ascertained by patients' self-assessment, neurologists' impression, and Movement Disorders Society Unified Parkinson's Disease Rating Scale score. The upper limb (ie, hand) was the site of onset in 80% of patients. Motor features progressed to involve the lower limb but remained limited to the initially affected body side over a 2-year follow-up. Agreement among the different metrics (96%) confirmed focal upper limb predominant motor impairment at onset. The findings were confirmed by quantitative kinematic analyses and from a cohort of 34 similar patients from the Parkinson's Progression Markers Initiative database. CONCLUSIONS: Motor manifestations in PD start distally in one upper limb. The complexity of the motor repertoire and, consequently, the presumed larger dopaminergic striatal demand for maintaining skillful motor function in the upper limb, may contribute to greater vulnerability of dopaminergic striatal terminals. Recognition of this motor pattern could be used to monitor the evolution of nigrostriatal degeneration and the putative impact of therapies. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Cohort Studies , Disease Progression , Humans , Mental Status and Dementia Tests , Prospective Studies , Upper Extremity
17.
Front Neurol ; 12: 742654, 2021.
Article in English | MEDLINE | ID: mdl-35002915

ABSTRACT

Objective: This study aimed to prove the concept of a new optical video-based system to measure Parkinson's disease (PD) remotely using an accessible standard webcam. Methods: We consecutively enrolled a cohort of 42 patients with PD and healthy subjects (HSs). The participants were recorded performing MDS-UPDRS III bradykinesia upper limb tasks with a computer webcam. The video frames were processed using the artificial intelligence algorithms tracking the movements of the hands. The video extracted features were correlated with clinical rating using the Movement Disorder Society revision of the Unified Parkinson's Disease Rating Scale and inertial measurement units (IMUs). The developed classifiers were validated on an independent dataset. Results: We found significant differences in the motor performance of the patients with PD and HSs in all the bradykinesia upper limb motor tasks. The best performing classifiers were unilateral finger tapping and hand movement speed. The model correlated both with the IMUs for quantitative assessment of motor function and the clinical scales, hence demonstrating concurrent validity with the existing methods. Conclusions: We present here the proof-of-concept of a novel webcam-based technology to remotely detect the parkinsonian features using artificial intelligence. This method has preliminarily achieved a very high diagnostic accuracy and could be easily expanded to other disease manifestations to support PD management.

18.
Front Neurol ; 12: 786166, 2021.
Article in English | MEDLINE | ID: mdl-35173666

ABSTRACT

INTRODUCTION: Deep brain stimulation (DBS) is widely used for treatment of advanced, medication-refractory Parkinson's disease (PD). However, a significant proportion of patients may suffer adverse effects; up to 10% will present one or more transient or permanent neurobehavioral events. PATIENT AND METHODS: In our case study, a 44-year-old woman diagnosed with PD 6 years previously who was suffering from motor fluctuations, dyskinesia, and freezing of gait episodes was submitted for DBS and implanted with directional electrodes. Intraoperative local field potentials (LFPs) were recorded. After surgery, conventional monopolar revision was performed. Preoperative 3T MRI studies and postoperative 3D and X-ray data were integrated using the Guide DTI software application (Brainlab), and diffusion tensor imaging tractography traced from cortical areas to each subthalamic nucleus (STN) using Elements software (Brainlab). RESULTS: We observed that left STN stimulation in the ring mode significantly improved motor symptoms, but the patient presented uncontrollable mirthful laughter. Stimulation was then switched to the directional mode; laughter remained when using the more posteromedial contact (3-C+) but not 2-C+ or 4-C+ at the same parameters. Interestingly, LFP recordings showed the highest beta-band activity over contacts 4 and 2, and very scarce beta power over contact 3. The orientation of the directional leads was selected based on the 3D postoperative X-rays. Associative fibers showed the shortest distance to contact number 3. CONCLUSION: Stimulation of the STN can affect motor and associative loops. The use of directional electrodes is a good option to avoid not only undesirable capsular or lemniscal effects, but also limbic/associative events. Oscillatory activity in the beta range that preferentially takes place over the somatomotor STN region and is closely related to motor improvement, provides a reliable guide for optimizing the DBS programming. The importance of the exact location of electrical stimulation to determine the non-motor symptoms such as mood, apathy, attention, and memory, as well as the usefulness of biological markers such as LFP for optimal programming, is discussed in relation to this case.

20.
N Engl J Med ; 383(26): 2501-2513, 2020 12 24.
Article in English | MEDLINE | ID: mdl-33369354

ABSTRACT

BACKGROUND: The subthalamic nucleus is the preferred neurosurgical target for deep-brain stimulation to treat cardinal motor features of Parkinson's disease. Focused ultrasound is an imaging-guided method for creating therapeutic lesions in deep-brain structures, including the subthalamic nucleus. METHODS: We randomly assigned, in a 2:1 ratio, patients with markedly asymmetric Parkinson's disease who had motor signs not fully controlled by medication or who were ineligible for deep-brain stimulation surgery to undergo focused ultrasound subthalamotomy on the side opposite their main motor signs or a sham procedure. The primary efficacy outcome was the between-group difference in the change from baseline to 4 months in the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) motor score (i.e., part III) for the more affected body side (range, 0 to 44, with higher scores indicating worse parkinsonism) in the off-medication state. The primary safety outcome (procedure-related complications) was assessed at 4 months. RESULTS: Among 40 enrolled patients, 27 were assigned to focused ultrasound subthalamotomy (active treatment) and 13 to the sham procedure (control). The mean MDS-UPDRS III score for the more affected side decreased from 19.9 at baseline to 9.9 at 4 months in the active-treatment group (least-squares mean difference, 9.8 points; 95% confidence interval [CI], 8.6 to 11.1) and from 18.7 to 17.1 in the control group (least-squares mean difference, 1.7 points; 95% CI, 0.0 to 3.5); the between-group difference was 8.1 points (95% CI, 6.0 to 10.3; P<0.001). Adverse events in the active-treatment group were dyskinesia in the off-medication state in 6 patients and in the on-medication state in 6, which persisted in 3 and 1, respectively, at 4 months; weakness on the treated side in 5 patients, which persisted in 2 at 4 months; speech disturbance in 15 patients, which persisted in 3 at 4 months; facial weakness in 3 patients, which persisted in 1 at 4 months; and gait disturbance in 13 patients, which persisted in 2 at 4 months. In 6 patients in the active-treatment group, some of these deficits were present at 12 months. CONCLUSIONS: Focused ultrasound subthalamotomy in one hemisphere improved motor features of Parkinson's disease in selected patients with asymmetric signs. Adverse events included speech and gait disturbances, weakness on the treated side, and dyskinesia. (Funded by Insightec and others; ClinicalTrials.gov number, NCT03454425.).


Subject(s)
High-Intensity Focused Ultrasound Ablation , Parkinson Disease/surgery , Subthalamic Nucleus/surgery , Adult , Aged , Double-Blind Method , Dyskinesias/etiology , Female , Gait Disorders, Neurologic/etiology , High-Intensity Focused Ultrasound Ablation/adverse effects , High-Intensity Focused Ultrasound Ablation/methods , Humans , Male , Middle Aged , Motor Skills , Parkinson Disease/physiopathology , Postoperative Complications , Severity of Illness Index , Speech Disorders/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...