Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Plant Sci ; 14: 1133505, 2023.
Article in English | MEDLINE | ID: mdl-37469773

ABSTRACT

Compact and automated sensing systems are needed to monitor plant health for NASA's controlled-environment space crop production. A new hyperspectral system was designed for early detection of plant stresses using both reflectance and fluorescence imaging in visible and near-infrared (VNIR) wavelength range (400-1000 nm). The prototype system mainly includes two LED line lights providing VNIR broadband and UV-A (365 nm) light for reflectance and fluorescence measurement, respectively, a line-scan hyperspectral camera, and a linear motorized stage with a travel range of 80 cm. In an overhead sensor-to-sample arrangement, the stage translates the lights and camera over the plants to acquire reflectance and fluorescence images in sequence during one cycle of line-scan imaging. System software was developed using LabVIEW to realize hardware parameterization, data transfer, and automated imaging functions. The imaging unit was installed in a plant growth chamber at NASA Kennedy Space Center for health monitoring studies for pick-and-eat salad crops. A preliminary experiment was conducted to detect plant drought stress for twelve Dragoon lettuce samples, of which half were well-watered and half were under-watered while growing. A machine learning method using an optimized discriminant classifier based on VNIR reflectance spectra generated classification accuracies over 90% for the first four days of the stress treatment, showing great potential for early detection of the drought stress on lettuce leaves before any visible symptoms and size differences were evident. The system is promising to provide useful information for optimization of growth environment and early mitigation of stresses in space crop production.

2.
Proc Natl Acad Sci U S A ; 117(32): 19131-19135, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32719119

ABSTRACT

Scaling current cereal production to a growing global population will be a challenge. Wheat supplies approximately one-fifth of the calories and protein for human diets. Vertical farming is a possible promising option for increasing future wheat production. Here we show that wheat grown on a single hectare of land in a 10-layer indoor vertical facility could produce from 700 ± 40 t/ha (measured) to a maximum of 1,940 ± 230 t/ha (estimated) of grain annually under optimized temperature, intensive artificial light, high CO2 levels, and a maximum attainable harvest index. Such yields would be 220 to 600 times the current world average annual wheat yield of 3.2 t/ha. Independent of climate, season, and region, indoor wheat farming could be environmentally superior, as less land area is needed along with reuse of most water, minimal use of pesticides and herbicides, and no nutrient losses. Although it is unlikely that indoor wheat farming will be economically competitive with current market prices in the near future, it could play an essential role in hedging against future climate or other unexpected disruptions to the food system. Nevertheless, maximum production potential remains to be confirmed experimentally, and further technological innovations are needed to reduce capital and energy costs in such facilities.


Subject(s)
Crop Production/methods , Triticum/growth & development , Climate , Crop Production/economics , Crop Production/instrumentation , Environment, Controlled , Seasons , Temperature
3.
Front Plant Sci ; 11: 673, 2020.
Article in English | MEDLINE | ID: mdl-32625217

ABSTRACT

The Advanced Plant Habitat (APH) is the largest research plant growth facility deployed on the International Space Station (ISS). APH is a fully enclosed, closed-loop plant life support system with an environmentally controlled growth chamber designed for conducting both fundamental and applied plant research during experiments extending as long as 135 days. APH was delivered to the ISS in parts aboard two commercial resupply missions: OA-7 in April 2017 and SpaceX-11 in June 2017, and was assembled and installed in the Japanese Experiment Module Kibo in November 2018. We report here on a 7-week-long hardware validation test that utilized a root module planted with both Arabidopsis (cv. Col 0) and wheat (cv. Apogee) plants. The validation test examined the APH's ability to control light intensity, spectral quality, humidity, CO2 concentration, photoperiod, temperature, and root zone moisture using commanding from ground facilities at the Kennedy Space Center (KSC). The test also demonstrated the execution of programmed experiment profiles that scheduled: (1) changes in environmental combinations (e.g., a daily photoperiod at constant relative humidity), (2) predetermined photographic events using the three APH cameras [overhead, sideview, and sideview near-infrared (NIR)], and (3) execution of experimental sequences during the life cycle of a crop (e.g., measure photosynthetic CO2 drawdown experiments). Arabidopsis and wheat were grown in microgravity to demonstrate crew procedures, planting protocols and watering schemes within APH. The ability of APH to contain plant debris was assessed during the harvest of mature Arabidopsis plants. Wheat provided a large evaporative load that tested root zone moisture control and the recovery of transpired water by condensation. The wheat canopy was also used to validate the ability of APH to measure gas exchange of plants from non-invasive gas exchange measurements (i.e., canopy photosynthesis and respiration). These features were evaluated by executing experiment profiles that utilized the CO2 drawdown technique to measure daily rates of canopy photosynthesis and dark-period CO2 increase for respiration. This hardware validation test confirmed that APH can measure fundamental plant responses to spaceflight conditions.

4.
Chemosphere ; 194: 504-514, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29241124

ABSTRACT

Struvite (MgNH4PO4·6H2O) forms in aqueous systems with high ammonia and phosphate concentrations. However, conditions that result into struvite formation are highly dependent on the ionic compositions, temperature, pH, and ion speciation characteristics. The primary ions involved in struvite formation have complex interactions and can form different crystals depending on the ionic levels, pH and temperature. Struvite as well as struvite analogues (with substitution of monovalent cations for NH4+ or divalent cations for Mg2+) as well as other crystals can form simultaneously and result in changes in crystal morphology during crystal growth. This review provides the results from experimental and theoretical studies on struvite formation and decomposition studies. Characteristics of NH4+ or divalent cations for Mg2+ were evaluated in comparison to monovalent and divalent ions for formation of struvite and its analogues. Struvite crystals forming in wastewater systems are likely to contain crystals other than struvite due to ionic interactions, pH changes, temperature effects and clustering of ions during nucleation and crystal growth. Decomposition of struvite occurs following a series of reactions depending on the rate of heating, temperature and availability of water during heating.


Subject(s)
Struvite/chemistry , Ammonia/chemistry , Crystallization , Hydrogen-Ion Concentration , Ions , Magnesium/chemistry , Phosphorus/chemistry , Temperature , Wastewater/chemistry
5.
Acta Hortic ; 593: 39-45, 2002.
Article in English | MEDLINE | ID: mdl-12882223

ABSTRACT

A layered canopy model was used to analyze the effects of diffuse light on canopy gross photosynthesis in controlled environment plant growth chambers, where, in contrast to the field, highly diffuse light can occur at high irradiance. The model suggests that high diffuse light fractions (approximately 0.7) and irradiance (1400 micromoles m-2 s-1) may enhance crop life-cycle canopy gross photosynthesis for hydroponic wheat by about 20% compared to direct light at the same irradiance. Our simulations suggest that high accuracy is not needed in specifying diffuse light fractions in chambers between approximately 0.7 and 1, because simulated photosynthesis for closed canopies plateau in this range. We also examined the effect of leaf angle distribution on canopy photosynthesis under growth chamber conditions, as these distributions determine canopy extinction coefficients for direct and diffuse light. We show that the spherical leaf angle distribution is not suitable for modeling photosynthesis of planophile canopies (e.g., soybean and peanut) in growth chambers. Also, the absorption of the light reflected from the surface below the canopy should generally be included in model simulations, as the corresponding albedo values in the photosynthetically active range may be quite high in growth chambers (e.g., approximately 0.5). In addition to the modeling implications, our results suggest that diffuse light conditions should be considered when drawing conclusions from experiments in controlled environments.


Subject(s)
Computer Simulation , Environment, Controlled , Light , Models, Biological , Photosynthesis/radiation effects , Plant Physiological Phenomena/radiation effects , Ecological Systems, Closed , Hydroponics , Life Support Systems , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Triticum/growth & development , Triticum/metabolism , Triticum/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...